Caja adiabática diseñada para minimizar el puente térmico de un sistema termoeléctrico

  1. Martín-Gómez, César 1
  2. Del Valle de Lersundi, Kattalin 1
  3. Zuazua Ros, Amaia 1
  4. Vidaurre-Arbizu, Marina 1
  5. Sacristán-Fernández, José Antonio 1
  6. Ibañez-Puy, María 2
  1. 1 Universidad de Navarra, España
  2. 2 ACR Grupo, España
Journal:
Informes de la construcción

ISSN: 0020-0883

Year of publication: 2021

Volume: 73

Issue: 562

Type: Article

DOI: 10.3989/IC.74303 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Informes de la construcción

Abstract

The authors of the article work on the integration of thermoelectricity in facades since 2009. The purpose of this article is to review the possibilities that this technology offers for its incorporation as a building air conditioning system, focusing on the description and analysis of the behaviour of the last prototype made within a research project. For this, the design criteria and the necessary components for its assembly are described, in this aspect the reduction of the thermal bridge with respect to previous prototypes has been especially important. The experimental methodology followed, and the tests performed are explained, critically analysing the results. The conclusions raise improvements and recommendations to implement in future developments.

Funding information

Funders

Bibliographic References

  • (1) Huang, H.-S., Weng, Y.-C., Chang, Y.-W., Chen, S.-L., & Ke, M.-T. (2010). Thermoelectric water-cooling device applied to electronic equipment. International Communications in Heat and Mass Transfer, 37(2), 140–146.
  • (2) Donaldson, P. (2015). Batteries, fuel cells, and alternative energy sources for military vehicles. Zeitschriftenaufsatz.
  • (3) Yang, J., & Stabler, F. R. (2009). Automotive Applications of Thermoelectric Materials. Journal of Electronic Materials, 38(7), 1245–1251.
  • (4) Riffat, S.., & Ma, X. (2003). Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering, 23(8), 913–935.
  • (5) Hamid Elsheikh, M., Shnawah, D. A., Sabri, M. F. M., Said, S. B. M., Haji Hassan, M., Ali Bashir, M. B., & Mohamad, M. (2014a). A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable and Sustainable Energy Reviews, 30, 337–355.
  • (6) Cold case – the future of refrigerant gas. (2017). CIBSE Journal, 2017.
  • (7) IEA SHC Task 41 Solar energy and Architecture. (2014). Solar Energy Systems in Architecture, Integration Criteria and Guidelines.
  • (8) Gayner, C., & Kar, K. K. (2016). Recent advances in thermoelectric materials. Progress in Materials Science, 83, 330–382.
  • (9) Zuazua-Ros, A., Martín-Gómez, C., Ibañez-Puy, E., Vidaurre-Arbizu, M., & Gelbstein, Y. (2019a). Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications. Renewable Energy, 131, 229–239.
  • (10) Riffat, S. ., & Qiu, G. (2004). Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners. Applied Thermal Engineering, 24(14–15), 1979–1993.
  • (11) Martin-Gomez, C., Ibanez-Puy, M., Bermejo-Busto, J., Sacristán Fernández, J. A., Carlos Ramos, J., & Rivas, A. (2016). Thermoelectric cooling heating unit prototype. Building Services Engineering Research & Technology, 37(4), 431–449.
  • (12) Martín-Gómez, C. (2011). Módulo prefabricado de fachada para climatización de espacios habitables mediante climatización termoeléctrica. 201101142.
  • (13) Ibáñez-Puy, M., Bermejo-Busto, J., Martín-Gómez, C., Vidaurre-Arbizu, M., & Sacristán-Fernández, J. A. (2017). Thermoelectric cooling heating unit performance under real conditions. Applied Energy, 200, 303–314.
  • (14) Ibañez-Puy, E., Martín-Gómez, C., Bermejo-Busto, J., & Zuazua-Ros, A. (2018b). Thermal and energy performance assessment of a thermoelectric heat pump integrated in an adiabatic box. Applied Energy, 228, 681–688.
  • (15) Aksamija, A., Aksamija, Z., Counihan, C., Brown, D., & Upadhyaya, M. (2019). Experimental Study of Operating Conditions and Integration of Thermoelectric Materials in Facade Systems. Frontiers in Energy Research, 7, 6.
  • (16) Araiz, M., Catalan, L., Herrero, O., Pérez, G., & Rodríguez, A. (2018). The importance of the assembly in thermoelectric generators. Bringing Thermoelectricity into Reality.
  • (17) Martín-Gómez, C., Del Valle de Lersundi, K., Zuazua-Ros, A., Sacristán, J.A., Ibañez-Puy, M. & Pereda López, J.J. (2019) Desarrollo constructivo de un prototipo de fachada termoeléctrico ubicado en la Base Antártica Gabriel de Castilla. VII Congreso Nacional de I+D en Defensa y Seguridad, San Fernando, Cádiz.
  • (18) Zhang, H. Y., Mui, Y. C. & Tarin, M. (2010). Analysis of thermoelectric cooler performance for high power electronic packages. Applied Thermal Engineering, 30, 561–568.