Nueva ruta pulvimetalúrgica de producción de aceros inoxidables ferríticos de baja activación endurecidos por dispersión de óxidos (ODS-RAF) para su aplicación en futuros reactores de fusión nuclear

  1. Gil Murillo, Emma
Dirigida por:
  1. Iñigo Iturriza Zubillaga Director
  2. Maria Nerea Ordas Mur Codirectora

Universidad de defensa: Universidad de Navarra

Fecha de defensa: 18 de diciembre de 2015

Tribunal:
  1. Carmen García Rosales Vázquez Presidenta
  2. Ane Miren Mancisidor Telleria Secretario/a
  3. M. Pilar Fernández Paredes Vocal
  4. Nerea Burgos Garcia Vocal
  5. Gemma Herranz Sanchez Cosgalla Vocal

Tipo: Tesis

Teseo: 121748 DIALNET lock_openDadun editor

Resumen

En esta tesis se ha mostrado la viabilidad de una ruta nueva de procesamiento de aceros ferríticos ODS inspirada en el método GARS. Se han obtenido, mediante atomización por gas, polvos de acero inoxidable ferrítico que contienen los formadores de la fase dispersa (Fe-14Cr-2W-(0.3-0.56)Ti-(0.18-0.37)Y)). De esta manera, se ha evitado la etapa del aleado mecánico. Se ha estudiado en profundidad el proceso de atomización y la influencia de sus parámetros en las características de los polvos. Para determinar con precisión la composición de los polvos, especialmente el contenido de itrio y titanio, se ha utilizado el ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry). La retención de estos elementos ha resultado ser altamente dependiente del nivel de vacío alcanzado en el atomizador. Se ha llevado a cabo la oxidación a bajas temperaturas del polvo atomizado (100-375 °C) para ajustar el contenido de oxígeno a valores equivalentes a la adición de Y2O3 y se han seleccionado los parámetros óptimos para alcanzar este objetivo. Se ha comprobado que la oxidación bajo estas condiciones sigue una cinética logarítimica, lo que permite que el ajuste del oxígeno se realice de forma robusta. En esta etapa tiene lugar un crecimiento de una capa ultrafina de óxido metaestable, rica sobre todo en hierro, que actúa como fuente de oxígeno para la formación de los nanoclusters Y-Ti-O durante los posteriores pasos del procesamiento. La técnica XPS (X-Ray Photoelectron Spectroscopy) ha permitido el estudio de la evolución de los óxidos superficiales durante la oxidación así como la identificación de cada fase. Además, se ha observado mediante FEG-SEM (Fied-Emission Gun Scanning Electron Microscopy) y TEM (Transmission Electron Microscopy) la microestructura superficial e interna tanto del polvo atomizado como del oxidado para identificar las diferencias entre ellos. Tras la oxidación, se han realizado ensayos de HIP a diferentes temperaturas para seleccionar la temperatura óptima de disociación de los óxidos localizados en las PPBs (Prior Particle Boundaries). Se ha comprobado que si se llevan a cabo ensayos de HIP a altas temperaturas, se forman los nanoclusters Y-Ti-O por la disociación de la capa de óxido. El oxígeno proveniente de esta capa se queda libre y difunde desde las PPBs a la matriz interna de la partícula previa (PP), donde reacciona con el itrio y el titanio. Además, se han llevado a cabo tratamientos térmicos del material tras HIP para estudiar la evolución de los precipitados tanto en las PPBs como en el interior de las PP. Se han utilizado el FEG-SEM y el TEM para evaluar las características microestructurales tras la consolidación mediante HIP y tras los tratamientos térmicos post-HIP. Asimismo, se ha empleado la técnica EBSD (Electron Backscatter Diffraction) para estudiar los cambios en el tamaño de grano de ferrita a medida que aumenta la temperatura. Además, se ha estudiado la evolución del itrio y el titanio desde la atomización hasta los tratamientos térmicos post-HIP mediante espectroscopía de absorción de rayos X en la Universidad de Latvia. Finalmente, se ha sometido el material a laminación en caliente, en el KIT (Karlsruhe Institute of Technology), para afinar el tamaño de grano y conseguir una mayor dispersión de las nanopartículas que mejore las propiedades mecánicas obtenidas en la etapa anterior de procesamiento. Se han llevado a cabo ensayos de tracción a temperaturas comprendidas entre 20-700 °C, sobre muestras mecanizadas a partir del material laminado en caliente, para estudiar la resistencia y ductilidad del material final. Estas propiedades proporcionan una valiosa perspectiva sobre la viabilidad de la aplicación de este material en diferentes tipos de reactores. Se ha demostrado la viabilidad de la obtención de aceros ferríticos ODS mediante la nueva ruta de producción propuesta, que evita el aleado mecánico.