QoE on media deliveriy in 5G environments
- MARTIN NAVAS, ANGEL
- Pablo Angueira Buceta Director/a
- Julian Florez Esnal Director
- Jon Montalban Sánchez Director/a
Universidad de defensa: Universidad del País Vasco - Euskal Herriko Unibertsitatea
Fecha de defensa: 07 de septiembre de 2018
- Amaia Arrinda Sanzberro Presidente/a
- Carlos Jesús Bernardos Cano Secretario/a
- Gabriel-Miró Muntean Vocal
Tipo: Tesis
Resumen
5G expandirá las redes móviles con un mayor ancho de banda, menor latencia y la capacidad de proveer conectividad de forma masiva y sin fallos. Los usuarios de servicios multimedia esperan una experiencia de reproducción multimedia fluida que se adapte de forma dinámica a los intereses del usuario y a su contexto de movilidad. Sin embargo, la red, adoptando una posición neutral, no ayuda a fortalecer los parámetros que inciden en la calidad de experiencia. En consecuencia, las soluciones diseñadas para realizar un envío de tráfico multimedia de forma dinámica y eficiente cobran un especial interés. Para mejorar la calidad de la experiencia de servicios multimedia en entornos 5G la investigación llevada a cabo en esta tesis ha diseñado un sistema múltiple, basado en cuatro contribuciones.El primer mecanismo, SaW, crea una granja elástica de recursos de computación que ejecutan tareas de análisis multimedia. Los resultados confirman la competitividad de este enfoque respecto a granjas de servidores. El segundo mecanismo, LAMB-DASH, elige la calidad en el reproductor multimedia con un diseño que requiere una baja complejidad de procesamiento. Las pruebas concluyen su habilidad para mejorar la estabilidad, consistencia y uniformidad de la calidad de experiencia entre los clientes que comparten una celda de red. El tercer mecanismo, MEC4FAIR, explota las capacidades 5G de analizar métricas del envío de los diferentes flujos. Los resultados muestran cómo habilita al servicio a coordinar a los diferentes clientes en la celda para mejorar la calidad del servicio. El cuarto mecanismo, CogNet, sirve para provisionar recursos de red y configurar una topología capaz de conmutar una demanda estimada y garantizar unas cotas de calidad del servicio. En este caso, los resultados arrojan una mayor precisión cuando la demanda de un servicio es mayor.