Los pacientes con placas coronarias vulnerables presentan mayores niveles séricos de metaloproteinasa-1

  1. Sánchez Elvira, G. 2
  2. Coma-Canella, I. 1
  3. Artaiz, M. 1
  4. Páramo, J. A. 1
  5. Barba, J. 1
  6. Calabuig, J. 1
  1. 1 Clínica Universitaria de Navarra
    info

    Clínica Universitaria de Navarra

    Pamplona, España

    ROR https://ror.org/03phm3r45

  2. 2 Complejo Hospitalario de Navarra
Revista:
Anales del sistema sanitario de Navarra

ISSN: 1137-6627

Año de publicación: 2017

Volumen: 40

Número: 1

Páginas: 35-42

Tipo: Artículo

DOI: 10.23938/ASSN.0004 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Anales del sistema sanitario de Navarra

Resumen

Fundamento. Las placas ateroscleróticas que producen la mayoría de los síndromes coronarios agudos al romperse son los fibroateromas de cápsula fina, denominados placas vulnerables. Éstas pueden ser detectadas únicamente con técnicas invasivas de imagen intracoronaria. Es preciso encontrar un biomarcador no invasivo que permita identificar a los pacientes con estas placas sin necesidad de cateterismo cardiaco. La metaloproteinasa-1 es una enzima involucrada en el metabolismo de la matriz extracelular que ha sido relacionada con la ruptura de las placas ateroscleróticas. Se desconocen sus niveles séricos en pacientes con placas vulnerables. Material y métodos. Se incluyeron pacientes sometidos a cateterismo cardiaco por enfermedad coronaria estable. Se estudiaron las arterias coronarias con tomografía de coherencia óptica para detectar placas vulnerables. Se extrajeron muestras de sangre periférica y del seno coronario para analizar la concentración de metaloproteinasa-1.Resultados. Se incluyeron 51 pacientes. Trece tenían al menos un fibroateroma de cápsula fina. No se encontraron diferencias significativas en las características clínicas, perfil lipídico ni proteína C reactiva entre los pacientes con y sin placas vulnerables. Los pacientes con placas vulnerables presentaron concentraciones significativamente mayores de metaloproteinasa-1, tanto en sangre periférica (7330±5541 vs 2894±1783 pg/ml, p=0,025) como en seno coronario (6012±3854 vs 2707±1252 pg/ml, p=0,047).Conclusiones. Los pacientes con placas vulnerables presentaron niveles séricos significativamente mayores de metaloproteinasa-1. Se requieren estudios con seguimiento clínico para evaluar el valor pronóstico de la metaloproteinasa-1 sérica.

Información de financiación

Este trabajo se financi? parcialmente con una beca del Departamento de Salud, Gobierno de Navarra (ref 15/2008) y del Plan de Investigaci?n de la Universidad de Navarra (PIUNA).

Referencias bibliográficas

  • KHOT UN, KHOT MB, BAJZER CT, SAPP SK, OHMAN EM, BRENER SJ et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA 2003; 290: 898-904.
  • BURKE AP, FARB A, MALCOM GT, LIANG YH, SMIALEK J, VIRMANI R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997; 336: 1276-1282.
  • KOLODGIE FD, VIRMANI R, BURKE AP, FARB A, WEBER DK, KUTYS R et al. Pathologic assessment of the vulnerable human coronary plaque. Heart 2004; 90: 1385-1391.
  • VIRMANI R, BURKE AP, FARB A, KOLODGIE FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006; 47: C13-18.
  • CHENG JM, GARCÍA-GARCÍA HM, DE BOER SP, KARDYS I, HEO JH, AKKERHUIS KM et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur Heart J 2014; 35: 639-647.
  • LINDAHL B. Are there really biomarkers of vulnerable plaque? Clin Chem 2012; 58: 151-153.
  • FUSTER V, MORENO PR, FAYAD ZA, CORTI R, BADIMON JJ. Atherothrombosis and high-risk plaque: part I: evolving concepts. J Am Coll Cardiol 2005; 46: 937-954.
  • NEWBY AC. Metalloproteinases promote plaque rupture and myocardial infarction: A persuasive concept waiting for clinical translation. Matrix Biol 2015; 44-46: 157-166.
  • NIKKARI ST, O'BRIEN KD, FERGUSON M, HATSUKAMI T, WELGUS HG, ALPERS CE et al. Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation 1995; 92: 1393-1398.
  • GUO A, WEI L, SHI H, LI X, YOU L. [Matrix metalloproteinase-1 and coronary atheroslerotic plaque rupture]. Zhonghua Bing Li Xue Za Zhi 2000; 29: 263-266.
  • LEHRKE M, GREIF M, BROEDL UC, LEBHERZ C, LAUBENDER RP, BECKER A et al. MMP-1 serum levels predict coronary atherosclerosis in humans. Cardiovasc Diabetol 2009; 8: 50.
  • TANINDI A, SAHINARSLAN A, ELBEG S, CEMRI M. Relationship between MMP-1, MMP-9, TIMP-1, IL-6 and risk factors, clinical presentation, extent and severity of atherosclerotic coronary artery disease. Open Cardiovasc Med J 2011; 5: 110-116.
  • SÁNCHEZ-ELVIRA G, COMA-CANELLA I, ARTAIZ M, PÁRAMO JA, BARBA J, CALABUIG J. Characterization of coronary plaques with combined use of intravascular ultrasound, virtual histology and optical coherence tomography. Heart Int 2010; 5: e12.
  • JANG IK, TEARNEY GJ, MACNEILL B, TAKANO M, MOSELEWSKI F, IFTIMA N et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 2005; 111: 1551-1555.
  • YABUSHITA H, BOUMA BE, HOUSER SL, ARETZ HT, JANG IK, SCHLENDORF KH et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002; 106: 1640-1645.
  • SAWADA T, SHITE J, GARCÍA-GARCÍA HM, SHINKE T, WATANABE S, OTAKE H et al. Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur Heart J 2008; 29: 1136-1146.
  • JANG IK, BOUMA BE, KANG DH, PARK SJ, PARK SW, SEUNG KB et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 2002; 39: 604-609.
  • RODRIGUEZ-GRANILLO GA, GARCÍA-GARCÍA HM, MC FADDEN EP, VALGIMIGLI M, AOKI J, DE FEYTER P et al. In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol 2005; 46: 2038-2042.
  • STONE GW, MAEHARA A, LANSKY AJ, DE BRUYNE B, CRISTEA E, MINTZ GS et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011; 364: 226-235.
  • LOW AF, KAWASE Y, CHAN YH, TEARNEY GJ, BOUMA BE, JANG IK. In vivo characterisation of coronary plaques with conventional grey-scale intravascular ultrasound: correlation with optical coherence tomography. EuroIntervention 2009; 4: 626-632.
  • SALES FJ, FALCÃO BA, FALCÃO JL, RIBEIRO EE, PERIN MA, HORTA PE et al. Evaluation of plaque composition by intravascular ultrasound "virtual histology": the impact of dense calcium on the measurement of necrotic tissue. EuroIntervention 2010; 6: 394-399.
  • BARLIS P, SERRUYS PW, GONZALO N, VAN DER GIESSEN WJ, DE JAEGERE PJ, REGAR E. Assessment of culprit and remote coronary narrowings using optical coherence tomography with long-term outcomes. Am J Cardiol 2008; 102: 391-395.
  • RAFFEL OC, MERCHANT FM, TEARNEY GJ, CHIA S, GAUTHIER DD, POMERANTSEV E et al. In vivo association between positive coronary artery remodelling and coronary plaque characteristics assessed by intravascular optical coherence tomography. Eur Heart J 2008; 29: 1721-1728.
  • SHAH PK, FALK E, BADIMON JJ, FERNANDEZ-ORTIZ A, MAILHAC A, VILLAREAL-LEVY G et al. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 1995; 92: 1565-1569.
  • HIGASHIKATA T, YAMAGISHI M, HIGASHI T, NAGATA I, IIHARA K, MIYAMOTO S et al. Altered expression balance of matrix metalloproteinases and their inhibitors in human carotid plaque disruption: results of quantitative tissue analysis using real-time RT-PCR method. Atherosclerosis 2006; 185: 165-172.
  • YU Y, KOIKE T, KITAJIMA S, LIU E, MORIMOTO M, SHIOMI M et al. Temporal and quantitative analysis of expression of metalloproteinases (MMPs) and their endogenous inhibitors in atherosclerotic lesions. Histol Histopathol 2008; 23: 1503-1516.
  • PÁRAMO JA, ORBE J, FERNÁNDEZ J. Fibrinolysis/proteolysis balance in stable angina pectoris in relation to angiographic findings. Thromb Haemost 2001; 86: 636-639.
  • ORBE J, RODRÍGUEZ JA, ARIAS R, BELZUNCE M, NESPEREIRA B, PÉREZ-ILZARBE M et al. Antioxidant vitamins increase the collagen content and reduce MMP-1 in a porcine model of atherosclerosis: implications for plaque stabilization. Atherosclerosis 2003; 167: 45-53.
  • ORBE J, FERNÁNDEZ L, RODRÍGUEZ JA, RÁBAGO G, BELZUNCE M, MONASTERIO A et al. Different expression of MMPs/TIMP-1 in human atherosclerotic lesions. Relation to plaque features and vascular bed. Atherosclerosis 2003; 170: 269-276.
  • MORGAN AR, RERKASEM K, GALLAGHER PJ, ZHANG B, MORRIS GE, CALDER PC et al. Differences in matrix metalloproteinase-1 and matrix metalloproteinase-12 transcript levels among carotid atherosclerotic plaques with different histopathological characteristics. Stroke 2004; 35: 1310-1315.
  • PEARCE E, TREGOUET DA, SAMNEGÅRD A, MORGAN AR, COX C, HAMSTEN A et al. Haplotype effect of the matrix metalloproteinase-1 gene on risk of myocardial infarction. Circ Res 2005; 97: 1070-1076.