Implicación de las características clínico-patológicas, radiológicas y marcadores moleculares en el tratamiento de la acromegalia

  1. ALHAMBRA EXPÓSITO, MARÍA ROSA
Dirigida por:
  1. Justo P. Castaño Fuentes Director/a
  2. María Angeles Gálvez Moreno Codirector/a
  3. Rául Miguel Luque Huertas Codirector/a

Universidad de defensa: Universidad de Córdoba (ESP)

Fecha de defensa: 21 de octubre de 2021

Tribunal:
  1. Francisco Gracia Navarro Presidente/a
  2. Francisco Javier Escalada San Martín Secretario
  3. Alfonso Soto Moreno Vocal

Tipo: Tesis

Teseo: 687553 DIALNET

Resumen

1. Introducción o motivación de la tesis La acromegalia se debe a la producción excesiva de hormona del crecimiento (GH), generalmente por un adenoma hipofisario. El tratamiento primario de elección es el quirúrgico, con unos índices de remisión del 80-90% en pacientes con microadenomas y del 50% en los macroadenomas. Sin embargo, la disponibilidad de fármacos para el tratamiento de la acromegalia como los análogos de somatostatina (SSA) y, en menor medida, los agonistas dopaminérgicos (DA), ha modificado la secuencia terapéutica en algunos casos. Los SSA (octreótida, lanreótida y pasireótida) inhiben la secreción de GH mediante la unión a receptores específicos de la somatostatina (SRIF). En particular, los SSA de primera generación, octreótida y lanreótida, se unen preferentemente a receptores SST2; mientras que el SSA de segunda generación, pasireótida, se une a varios receptores y con mayor afinidad a SST5. Por su parte, los DA se unen fundamentalmente al receptor de dopamina tipo-2 (DR2). Aunque se ha demostrado que estos fármacos son capaces de reducir los niveles de GH y aliviar algunos síntomas, su eficacia no es generalizada y un porcentaje de los pacientes presentan baja o nula respuesta de partida, o una pérdida de la misma, probablemente asociada a unos bajos niveles de expresión de receptores de SST y dopamina en el adenoma somatotropo. Por desgracia, hasta el momento actual, no hay descrito ningún parámetro clínico, bioquímico, anatomopatológico, inmunohistoquímico ni molecular a nivel tumoral que nos permita predecir con seguridad la eficacia del tratamiento médico pre-quirúrgico y/o la curación de la acromegalia en los enfermos tratados con cirugía, siendo necesario el seguimiento de por vida en todos los casos. 2.Contenido de la investigación El objetivo de este estudio es determinar la posible relación entre las características clínico-patológicas de los pacientes al diagnóstico de la acromegalia y la expresión de distintos receptores moleculares a nivel tumoral. El segundo objetivo de nuestro estudio es analizar si existe una relación entre la señal en T2 en la Resonancia Magnética Nuclear (RMN) del adenoma y las características clínico-patológicas de los pacientes al diagnóstico de la acromegalia y/o con la expresión génica de distintos receptores a nivel tumoral, para así poder anticipar cuál podría ser el tratamiento más eficiente en la terapia prequirúrgica del paciente. Así mismo, como último objetivo se pretendió evaluar la posible capacidad de la expresión de receptores para predecir la curación o recidiva de la acromegalia. Para ello se diseñó un estudio observacional retrospectivo, en el que se incluyeron 22 pacientes con acromegalia diagnosticados en el servicio de Endocrinología y Nutrición del Hospital Universitario Reina Sofía que se intervinieron quirúrgicamente, y en los que se realizó el estudio molecular del tumor en el Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC) y el Departamento de Biología Celular de la Universidad de Córdoba. Los resultados demuestran que: 1) No existen diferencias en cuanto a la curación quirúrgica o el control bioquímico, entre aquellos que recibieron tratamiento con SSA antes de la cirugía, y los que no lo recibieron. 2) Los niveles de expresión de los receptores en el adenoma no se correlacionaron con las medidas de IGF-1 o de GH sérica después de la SOG. 3) Los adenomas con crecimiento extraselar y concretamente aquellos con crecimiento supraselar tienen mayor expresión de SST3, por lo que pasireótida podría ser una alternativa terapéutica. También expresan más DR4, por lo que probablemente sea interesante el estudio de este receptor como diana para el tratamiento de estos pacientes. A su vez, tienen mayor expresión de SST3 y mayor expresión de Ki67. Concretamente aquellos con crecimiento supraselar tienen mayor expresión de SST3, DR4 y DR5 que aquellos sin crecimiento supraselar. Los adenomas con invasión de senos cavernosos también expresan más DR5 que aquellos sin invasión. 4) Los niveles de colesterol total basal, y los de LDL-c se correlacionan de forma directa con SST2, lo que sugiere que los pacientes con hipercolesterolemia se podrían beneficiar mejor del tratamiento con octreótida o lanreótida. 5) Los niveles de cortisol plasmático se relacionan de forma directa con la expresión de SST2, SST3, SST5 y DR2L. 6) Existe una correlación inversa entre la edad al diagnóstico y la talla y entre la edad al diagnóstico y los niveles de GH plasmáticos. 7) Los adenomas hiperintensos en T2 tendían a ser más grandes, sobre todo en el diámetro inferoposteiror (DIP) y a ser más invasivos, pues tenían un índice de Knosp mayor. Además, los adenomas hiperintensos en T2 tendían a tener niveles más altos de IGF-1 y un nadir menor de GH tras SOG, y mayor expresión de DR5 y Ki67 que aquellos isointensos. 8) La expresión de DR5 se correlaciona de forma directa con los diámetros DAP y DIP, y también existe una correlación directa entre el índice de Knosp y la expresión de DR5 y de SST3. Además, el índice de proliferación Ki67 se correlacionó de forma directa con la expresión de DR5, SST2 y SST3. 9) Los adenomas con mayores niveles de expresión del DR2T muestran una correlación con un mejor control bioquímico de los pacientes. 3.Conclusión - Existe una correlación entre parámetros clínicos pre-quirúrgico y la expresión de ciertos receptores de somatostatina y dopamina en la pieza tumoral de los pacientes con acromegalia. Estos datos iniciales sugieren la posibilidad de que determinados parámetros clínicos pudieran predecir el patrón molecular de los adenomas somatotropos, lo que, a su vez, ayudaría a seleccionar tratamientos médicos pre-quirúrgicos más dirigidos y posiblemente eficaces. - Los pacientes controlados bioquímicamente después de la cirugía presentaban una mayor expresión de receptores DR2 que los que no estaban controlados. Este hecho es plausible, debido a que la respuesta a octeótrida es mejor en aquellos adenomas que expresan niveles altos de DR2. - Los adenomas hipofisarios productores de GH hiperintensos en T2 son más grandes y tienden a ser más agresivos, tanto por la invasión de zonas adyacentes, como por la expresión de marcadores moleculares (mayor expresión de DR5 y Ki67), y por tanto tienen mayores niveles de IGF-1. Un estudio de imagen exhaustivo prequirúrgico puede ayudar a elegir el tratamiento idóneo antes de la cirugía. 4. Bibliografía 1. Shlomo Melmed MBChB MACP, K.S.P.M., P. Reed Larsen MD FRCP, Henry M. Kronenberg MD, Williams. Tratado De Endocrinología. . 2017. 2. http://cnx.org/content/col11496/1.6/. 3. Lloyd R, O.R., Klöppel G, Rosai J., WHO Classification of tumours of endocrine organs. 4 ed. Vol. 10. 2017, Ginebra: World Health Organization. 355. 4. Pico, A., et al., Recommendations on the pathological report of pituitary tumors. A consensus of experts of the Spanish Society of Endocrinology and Nutrition and the Spanish Society of Pathology. Endocrinol Diabetes Nutr, 2021. 68(3): p. 196-207. 5. Villa, C., et al., A standardised diagnostic approach to pituitary neuroendocrine tumours (PitNETs): a European Pituitary Pathology Group (EPPG) proposal. Virchows Arch, 2019. 475(6): p. 687-692. 6. Lavrentaki, A., et al., Epidemiology of acromegaly: review of population studies. Pituitary, 2017. 20(1): p. 4-9. 7. Mestron, A., et al., Epidemiology, clinical characteristics, outcome, morbidity and mortality in acromegaly based on the Spanish Acromegaly Registry (Registro Espanol de Acromegalia, REA). Eur J Endocrinol, 2004. 151(4): p. 439-46. 8. Etxabe, J., et al., Acromegaly: an epidemiological study. J Endocrinol Invest, 1993. 16(3): p. 181-7. 9. Holdaway, I.M. and C. Rajasoorya, Epidemiology of acromegaly. Pituitary, 1999. 2(1): p. 29-41. 10. de Pablos-Velasco, P., et al., Diagnosis, treatment and follow-up of patients with acromegaly in a clinical practice setting in Spain: the ACROPRAXIS program Delphi survey. Pituitary, 2020. 23(2): p. 129-139. 11. Ben-Shlomo, A. and S. Melmed, Acromegaly. Endocrinol Metab Clin North Am, 2008. 37(1): p. 101-22, viii. 12. Ben-Shlomo, A., et al., Clinical, quality of life, and economic value of acromegaly disease control. Pituitary, 2011. 14(3): p. 284-94. 13. Lamas, C., et al., Silent somatotropinomas. Minerva Endocrinol, 2019. 44(2): p. 137-142. 14. Gadelha, M.R., et al., Loss of heterozygosity on chromosome 11q13 in two families with acromegaly/gigantism is independent of mutations of the multiple endocrine neoplasia type I gene. J Clin Endocrinol Metab, 1999. 84(1): p. 249-56. 15. Vierimaa, O., et al., Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science, 2006. 312(5777): p. 1228-30. 16. Daly, A.F., et al., Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J Clin Endocrinol Metab, 2007. 92(5): p. 1891-6. 17. Trivellin, G., et al., Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med, 2014. 371(25): p. 2363-74. 18. Hannah-Shmouni, F., G. Trivellin, and C.A. Stratakis, Genetics of gigantism and acromegaly. Growth Horm IGF Res, 2016. 30-31: p. 37-41. 19. Zhu, X., et al., Genetic control of pituitary development and hypopituitarism. Curr Opin Genet Dev, 2005. 15(3): p. 332-40. 20. Melmed, S., Acromegaly pathogenesis and treatment. J Clin Invest, 2009. 119(11): p. 3189-202. 21. Tannenbaum, G.S., J. Epelbaum, and C.Y. Bowers, Interrelationship between the novel peptide ghrelin and somatostatin/growth hormone-releasing hormone in regulation of pulsatile growth hormone secretion. Endocrinology, 2003. 144(3): p. 967-74. 22. Brown, R.J., et al., Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. Nat Struct Mol Biol, 2005. 12(9): p. 814-21. 23. Lanning, N.J. and C. Carter-Su, Recent advances in growth hormone signaling. Rev Endocr Metab Disord, 2006. 7(4): p. 225-35. 24. Conway-Campbell, B.L., et al., The extracellular domain of the growth hormone receptor interacts with coactivator activator to promote cell proliferation. Mol Endocrinol, 2008. 22(9): p. 2190-202. 25. Maile, L.A., et al., Insulin-like growth factor-I signaling in smooth muscle cells is regulated by ligand binding to the 177CYDMKTTC184 sequence of the beta3-subunit of alphaVbeta3. Mol Endocrinol, 2006. 20(2): p. 405-13. 26. Clemmons, D.R., Use of mutagenesis to probe IGF-binding protein structure/function relationships. Endocr Rev, 2001. 22(6): p. 800-17. 27. Kim, H., et al., Intact insulin and insulin-like growth factor-I receptor signaling is required for growth hormone effects on skeletal muscle growth and function in vivo. Endocrinology, 2005. 146(4): p. 1772-9. 28. Cordido, F., et al., [Practical guidelines for diagnosis and treatment of acromegaly. Grupo de Neuroendocrinologia de la Sociedad Espanola de Endocrinologia y Nutricion]. Endocrinol Nutr, 2013. 60(8): p. 457 e1-457 e15. 29. Vilar, L., et al., Acromegaly: clinical features at diagnosis. Pituitary, 2017. 20(1): p. 22-32. 30. Melmed, S., et al., Guidelines for acromegaly management: an update. J Clin Endocrinol Metab, 2009. 94(5): p. 1509-17. 31. Reid, T.J., et al., Features at diagnosis of 324 patients with acromegaly did not change from 1981 to 2006: acromegaly remains under-recognized and under-diagnosed. Clin Endocrinol (Oxf), 2010. 72(2): p. 203-8. 32. Rua Marín, C.L.S., G; Campuzano Maya, G., Diagnóstico de acromegalia. Medicina y Laboratorio, 2011. 17(11): p. 511-531. 33. Katznelson, L., et al., Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab, 2014. 99(11): p. 3933-51. 34. Chanson, P. and S. Salenave, Acromegaly. Orphanet J Rare Dis, 2008. 3: p. 17. 35. Abreu, A., et al., Challenges in the diagnosis and management of acromegaly: a focus on comorbidities. Pituitary, 2016. 19(4): p. 448-57. 36. Vilar, L., et al., Substantial shrinkage of adenomas cosecreting growth hormone and prolactin with use of cabergoline therapy. Endocr Pract, 2007. 13(4): p. 396-402. 37. Ben-Shlomo, A. and S. Melmed, Skin manifestations in acromegaly. Clin Dermatol, 2006. 24(4): p. 256-9. 38. Miller, A., et al., Impact of musculoskeletal disease on quality of life in long-standing acromegaly. Eur J Endocrinol, 2008. 158(5): p. 587-93. 39. Kropf, L.L., et al., Functional evaluation of the joints in acromegalic patients and associated factors. Clin Rheumatol, 2013. 32(7): p. 991-8. 40. Mazziotti, G., et al., Vertebral fractures in patients with acromegaly: a 3-year prospective study. J Clin Endocrinol Metab, 2013. 98(8): p. 3402-10. 41. Zoicas, F., et al., Screening for Acromegaly in Patients with Carpal Tunnel Syndrome: A Prospective Study (ACROCARP). Horm Metab Res, 2016. 48(7): p. 452-6. 42. Webb, S.M., Quality of life in acromegaly. Neuroendocrinology, 2006. 83(3-4): p. 224-9. 43. Dantas, R.A., et al., Physical activities in daily life and functional capacity compared to disease activity control in acromegalic patients: impact in self-reported quality of life. Arq Bras Endocrinol Metabol, 2013. 57(7): p. 550-7. 44. Capatina, C. and J.A. Wass, 60 YEARS OF NEUROENDOCRINOLOGY: Acromegaly. J Endocrinol, 2015. 226(2): p. T141-60. 45. Colao, A., et al., Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev, 2004. 25(1): p. 102-52. 46. van Haute, F.R., et al., Prevalence of sleep apnea and metabolic abnormalities in patients with acromegaly and analysis of cephalometric parameters by magnetic resonance imaging. Eur J Endocrinol, 2008. 158(4): p. 459-65. 47. Vilar, L., et al., Increase of classic and nonclassic cardiovascular risk factors in patients with acromegaly. Endocr Pract, 2007. 13(4): p. 363-72. 48. Espinosa-de-los-Monteros, A.L., et al., Clinical and biochemical characteristics of acromegalic patients with different abnormalities in glucose metabolism. Pituitary, 2011. 14(3): p. 231-5. 49. Bondanelli, M., M.R. Ambrosio, and E.C. degli Uberti, Pathogenesis and prevalence of hypertension in acromegaly. Pituitary, 2001. 4(4): p. 239-49. 50. Mosca, S., et al., Cardiovascular involvement in patients affected by acromegaly: an appraisal. Int J Cardiol, 2013. 167(5): p. 1712-8. 51. dos Santos Silva, C.M., et al., Low Frequency of Cardiomyopathy Using Cardiac Magnetic Resonance Imaging in an Acromegaly Contemporary Cohort. J Clin Endocrinol Metab, 2015. 100(12): p. 4447-55. 52. Yedinak, C.G. and M. Fleseriu, Self-perception of cognitive function among patients with active acromegaly, controlled acromegaly, and non-functional pituitary adenoma: a pilot study. Endocrine, 2014. 46(3): p. 585-93. 53. Manara, R., et al., Increased rate of intracranial saccular aneurysms in acromegaly: an MR angiography study and review of the literature. J Clin Endocrinol Metab, 2011. 96(5): p. 1292-300. 54. Manara, R., et al., Herniation of cerebellar tonsils in acromegaly: prevalence, pathogenesis and clinical impact. Pituitary, 2013. 16(1): p. 122-30. 55. Carvalho, M.A., et al., Sensorineural hearing loss in acromegalic patients under treatment. Braz J Otorhinolaryngol, 2012. 78(4): p. 98-102. 56. Glezer, A. and M.D. Bronstein, Pituitary apoplexy: pathophysiology, diagnosis and management. Arch Endocrinol Metab, 2015. 59(3): p. 259-64. 57. Fraser, L.A., et al., Remission of acromegaly after pituitary apoplexy: case report and review of literature. Endocr Pract, 2009. 15(7): p. 725-31. 58. Dutta, P., et al., Colonic neoplasia in acromegaly: increased proliferation or deceased apoptosis? Pituitary, 2012. 15(2): p. 166-73. 59. Wolinski, K., A. Czarnywojtek, and M. Ruchala, Risk of thyroid nodular disease and thyroid cancer in patients with acromegaly--meta-analysis and systematic review. PLoS One, 2014. 9(2): p. e88787. 60. Reverter, J.L., et al., Benign and malignant nodular thyroid disease in acromegaly. Is a routine thyroid ultrasound evaluation advisable? PLoS One, 2014. 9(8): p. e104174. 61. dos Santos, M.C., et al., Thyroid cancer in patients with acromegaly: a case-control study. Pituitary, 2013. 16(1): p. 109-14. 62. Boguszewski, C.L. and J. Ayuk, MANAGEMENT OF ENDOCRINE DISEASE: Acromegaly and cancer: an old debate revisited. Eur J Endocrinol, 2016. 175(4): p. R147-56. 63. Kannan, S. and L. Kennedy, Diagnosis of acromegaly: state of the art. Expert Opin Med Diagn, 2013. 7(5): p. 443-53. 64. Giustina, A., et al., A consensus on criteria for cure of acromegaly. J Clin Endocrinol Metab, 2010. 95(7): p. 3141-8. 65. Lugo, G., L. Pena, and F. Cordido, Clinical manifestations and diagnosis of acromegaly. Int J Endocrinol, 2012. 2012: p. 540398. 66. Hagiwara, A., et al., Comparison of growth hormone-producing and non-growth hormone-producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology, 2003. 228(2): p. 533-8. 67. Heck, A., et al., Intensity of pituitary adenoma on T2-weighted magnetic resonance imaging predicts the response to octreotide treatment in newly diagnosed acromegaly. Clin Endocrinol (Oxf), 2012. 77(1): p. 72-8. 68. Bakhtiar, Y., et al., Geometric survey on magnetic resonance imaging of growth hormone producing pituitary adenoma. Pituitary, 2014. 17(2): p. 142-9. 69. Potorac, I., et al., Pituitary MRI characteristics in 297 acromegaly patients based on T2-weighted sequences. Endocr Relat Cancer, 2015. 22(2): p. 169-77. 70. Kimmell, K.T., R.J. Weil, and N.F. Marko, Multi-modal management of acromegaly: a value perspective. Pituitary, 2015. 18(5): p. 658-65. 71. Colao, A., et al., Could different treatment approaches in acromegaly influence life expectancy? A comparative study between Bulgaria and Campania (Italy). Eur J Endocrinol, 2014. 171(2): p. 263-73. 72. Melmed, S., Pituitary Medicine From Discovery to Patient-Focused Outcomes. J Clin Endocrinol Metab, 2016. 101(3): p. 769-77. 73. Cuevas-Ramos, D., et al., A structural and functional acromegaly classification. J Clin Endocrinol Metab, 2015. 100(1): p. 122-31. 74. Colao, A., et al., Acromegaly. Nat Rev Dis Primers, 2019. 5(1): p. 20. 75. Holdaway, I.M., R.C. Rajasoorya, and G.D. Gamble, Factors influencing mortality in acromegaly. J Clin Endocrinol Metab, 2004. 89(2): p. 667-74. 76. Boguszewski, M. and A.A. Cardoso-Demartini, MANAGEMENT OF ENDOCRINE DISEASE: Growth and growth hormone therapy in short children born preterm. Eur J Endocrinol, 2017. 176(3): p. R111-R122. 77. Holdaway, I.M., M.J. Bolland, and G.D. Gamble, A meta-analysis of the effect of lowering serum levels of GH and IGF-I on mortality in acromegaly. Eur J Endocrinol, 2008. 159(2): p. 89-95. 78. Sesmilo, G., [Epidemiology of acromegaly in Spain]. Endocrinol Nutr, 2013. 60(8): p. 470-4. 79. Sherlock, M., et al., Mortality in patients with pituitary disease. Endocr Rev, 2010. 31(3): p. 301-42. 80. Ayuk, J., et al., Growth hormone and pituitary radiotherapy, but not serum insulin-like growth factor-I concentrations, predict excess mortality in patients with acromegaly. J Clin Endocrinol Metab, 2004. 89(4): p. 1613-7. 81. Bogazzi, F., et al., Comparison of the effects of primary somatostatin analogue therapy and pituitary adenomectomy on survival in patients with acromegaly: a retrospective cohort study. Eur J Endocrinol, 2013. 169(3): p. 367-76. 82. Mercado, M., et al., Successful mortality reduction and control of comorbidities in patients with acromegaly followed at a highly specialized multidisciplinary clinic. J Clin Endocrinol Metab, 2014. 99(12): p. 4438-46. 83. Wu, T.E., et al., The role of insulin-like growth factor-1 and growth hormone in the mortality of patients with acromegaly after trans-sphenoidal surgery. Growth Horm IGF Res, 2010. 20(6): p. 411-5. 84. Sherlock, M., et al., ACTH deficiency, higher doses of hydrocortisone replacement, and radiotherapy are independent predictors of mortality in patients with acromegaly. J Clin Endocrinol Metab, 2009. 94(11): p. 4216-23. 85. Bolfi, F., et al., Mortality in acromegaly decreased in the last decade: a systematic review and meta-analysis. Eur J Endocrinol, 2018. 179(1): p. 59-71. 86. Sesmilo, G., et al., Changes in acromegaly treatment over four decades in Spain: analysis of the Spanish Acromegaly Registry (REA). Pituitary, 2013. 16(1): p. 115-21. 87. Nomikos, P., M. Buchfelder, and R. Fahlbusch, The outcome of surgery in 668 patients with acromegaly using current criteria of biochemical 'cure'. Eur J Endocrinol, 2005. 152(3): p. 379-87. 88. Wang, Y.Y., et al., Acromegaly surgery in Manchester revisited--the impact of reducing surgeon numbers and the 2010 consensus guidelines for disease remission. Clin Endocrinol (Oxf), 2012. 76(3): p. 399-406. 89. Chen, C.J., et al., Microsurgical versus endoscopic transsphenoidal resection for acromegaly: a systematic review of outcomes and complications. Acta Neurochir (Wien), 2017. 159(11): p. 2193-2207. 90. Fleseriu, M., J.B. Delashaw, Jr., and D.M. Cook, Acromegaly: a review of current medical therapy and new drugs on the horizon. Neurosurg Focus, 2010. 29(4): p. E15. 91. Bhayana, S., et al., The implication of somatotroph adenoma phenotype to somatostatin analog responsiveness in acromegaly. J Clin Endocrinol Metab, 2005. 90(11): p. 6290-5. 92. Zhao, D., Y. Tomono, and T. Nose, Expression of P27kip1 and Ki-67 in pituitary adenomas: an investigation of marker of adenoma invasiveness. Acta Neurochir (Wien), 1999. 141(2): p. 187-92. 93. Frara, S., et al., The Modern Criteria for Medical Management of Acromegaly. Prog Mol Biol Transl Sci, 2016. 138: p. 63-83. 94. Melmed, S., et al., A Consensus Statement on acromegaly therapeutic outcomes. Nat Rev Endocrinol, 2018. 14(9): p. 552-561. 95. Colao, A., et al., First-line therapy of acromegaly: a statement of the A.L.I.C.E. (Acromegaly primary medical treatment Learning and Improvement with Continuous Medical Education) Study Group. J Endocrinol Invest, 2006. 29(11): p. 1017-20. 96. Chin, S.O., et al., Medical Treatment with Somatostatin Analogues in Acromegaly: Position Statement. Endocrinol Metab (Seoul), 2019. 34(1): p. 53-62. 97. Colao, A., et al., Effect of different dopaminergic agents in the treatment of acromegaly. J Clin Endocrinol Metab, 1997. 82(2): p. 518-23. 98. Sandret, L., P. Maison, and P. Chanson, Place of cabergoline in acromegaly: a meta-analysis. J Clin Endocrinol Metab, 2011. 96(5): p. 1327-35. 99. Giustina, A., et al., Use of Pegvisomant in acromegaly. An Italian Society of Endocrinology guideline. J Endocrinol Invest, 2014. 37(10): p. 1017-30. 100. Colao, A., et al., Interpreting biochemical control response rates with first-generation somatostatin analogues in acromegaly. Pituitary, 2016. 19(3): p. 235-47. 101. Colao, A., et al., Pasireotide versus octreotide in acromegaly: a head-to-head superiority study. J Clin Endocrinol Metab, 2014. 99(3): p. 791-9. 102. Gadelha, M.R., et al., Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): a randomised, phase 3 trial. Lancet Diabetes Endocrinol, 2014. 2(11): p. 875-84. 103. Patel, Y.C., Somatostatin and its receptor family. Front Neuroendocrinol, 1999. 20(3): p. 157-98. 104. van der Hoek, J., L.J. Hofland, and S.W. Lamberts, Novel subtype specific and universal somatostatin analogues: clinical potential and pitfalls. Curr Pharm Des, 2005. 11(12): p. 1573-92. 105. Gahete, M.D., et al., Understanding the multifactorial control of growth hormone release by somatotropes: lessons from comparative endocrinology. Ann N Y Acad Sci, 2009. 1163: p. 137-53. 106. Gunther, T., et al., International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev, 2018. 70(4): p. 763-835. 107. Wang, B., et al., Differential involvement of signaling pathways in the regulation of growth hormone release by somatostatin and growth hormone-releasing hormone in orange-spotted grouper (Epinephelus coioides). Mol Cell Endocrinol, 2014. 382(2): p. 851-9. 108. Casarini, A.P., et al., Acromegaly: correlation between expression of somatostatin receptor subtypes and response to octreotide-lar treatment. Pituitary, 2009. 12(4): p. 297-303. 109. Taboada, G.F., et al., Quantitative analysis of somatostatin receptor subtype (SSTR1-5) gene expression levels in somatotropinomas and non-functioning pituitary adenomas. Eur J Endocrinol, 2007. 156(1): p. 65-74. 110. Cuevas-Ramos, D. and M. Fleseriu, Somatostatin receptor ligands and resistance to treatment in pituitary adenomas. J Mol Endocrinol, 2014. 52(3): p. R223-40. 111. Bruns, C., et al., SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol, 2002. 146(5): p. 707-16. 112. Wolin, E.M., et al., Safety, tolerability, pharmacokinetics, and pharmacodynamics of a long-acting release (LAR) formulation of pasireotide (SOM230) in patients with gastroenteropancreatic neuroendocrine tumors: results from a randomized, multicenter, open-label, phase I study. Cancer Chemother Pharmacol, 2013. 72(2): p. 387-95. 113. Bevan, J.S., Clinical review: The antitumoral effects of somatostatin analog therapy in acromegaly. J Clin Endocrinol Metab, 2005. 90(3): p. 1856-63. 114. Melmed, S., et al., A critical analysis of pituitary tumor shrinkage during primary medical therapy in acromegaly. J Clin Endocrinol Metab, 2005. 90(7): p. 4405-10. 115. Vieira, A.L. and S.L. Gomes, Global gene expression analysis during sporulation of the aquatic fungus Blastocladiella emersonii. Eukaryot Cell, 2010. 9(3): p. 415-23. 116. Missale, C., et al., Dopamine receptors: from structure to function. Physiol Rev, 1998. 78(1): p. 189-225. 117. Renner, U., et al., Heterogeneous dopamine D2 receptor subtype messenger ribonucleic acid expression in clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab, 1998. 83(4): p. 1368-75. 118. Ferone, D., et al., Correlation of in vitro and in vivo somatotropic adenoma responsiveness to somatostatin analogs and dopamine agonists with immunohistochemical evaluation of somatostatin and dopamine receptors and electron microscopy. J Clin Endocrinol Metab, 2008. 93(4): p. 1412-7. 119. Saveanu, A. and P. Jaquet, Somatostatin-dopamine ligands in the treatment of pituitary adenomas. Rev Endocr Metab Disord, 2009. 10(2): p. 83-90. 120. Cantone, M.C., A. Dicitore, and G. Vitale, Somatostatin-Dopamine Chimeric Molecules in Neuroendocrine Neoplasms. J Clin Med, 2021. 10(3). 121. Taboada, G.F., et al., Quantitative analysis of somatostatin receptor subtypes (1-5) gene expression levels in somatotropinomas and correlation to in vivo hormonal and tumor volume responses to treatment with octreotide LAR. Eur J Endocrinol, 2008. 158(3): p. 295-303. 122. Neto, L.V., et al., Expression analysis of dopamine receptor subtypes in normal human pituitaries, nonfunctioning pituitary adenomas and somatotropinomas, and the association between dopamine and somatostatin receptors with clinical response to octreotide-LAR in acromegaly. J Clin Endocrinol Metab, 2009. 94(6): p. 1931-7. 123. Mattar, P., M.R. Alves Martins, and J. Abucham, Short- and long-term efficacy of combined cabergoline and octreotide treatment in controlling igf-I levels in acromegaly. Neuroendocrinology, 2010. 92(2): p. 120-7. 124. Giustina, A., et al., Pegvisomant in acromegaly: an update. J Endocrinol Invest, 2017. 40(6): p. 577-589. 125. Loeffler, J.S. and H.A. Shih, Radiation therapy in the management of pituitary adenomas. J Clin Endocrinol Metab, 2011. 96(7): p. 1992-2003. 126. Langsenlehner, T., et al., Long-term follow-up of patients with pituitary macroadenomas after postoperative radiation therapy: analysis of tumor control and functional outcome. Strahlenther Onkol, 2007. 183(5): p. 241-7. 127. Ayuk, J. and P.M. Stewart, Mortality following pituitary radiotherapy. Pituitary, 2009. 12(1): p. 35-9. 128. Gandhi, C.D., et al., The historical evolution of transsphenoidal surgery: facilitation by technological advances. Neurosurg Focus, 2009. 27(3): p. E8. 129. Jagannathan, J., et al., Gamma knife radiosurgery for acromegaly: outcomes after failed transsphenoidal surgery. Neurosurgery, 2008. 62(6): p. 1262-9; discussion 1269-70. 130. Pollock, B.E., et al., Radiosurgery of growth hormone-producing pituitary adenomas: factors associated with biochemical remission. J Neurosurg, 2007. 106(5): p. 833-8. 131. van der Lely, A.J., et al., Development of ACRODAT((R)), a new software medical device to assess disease activity in patients with acromegaly. Pituitary, 2017. 20(6): p. 692-701. 132. Webb, S.M. and X. Badia, Quality of Life in Acromegaly. Neuroendocrinology, 2016. 103(1): p. 106-11. 133. Webb, S.M., et al., Validity and clinical applicability of the acromegaly quality of life questionnaire, AcroQoL: a 6-month prospective study. Eur J Endocrinol, 2006. 155(2): p. 269-77. 134. Geraedts, V.J., et al., Predictors of Quality of Life in Acromegaly: No Consensus on Biochemical Parameters. Front Endocrinol (Lausanne), 2017. 8: p. 40. 135. Caron, P.J., et al., Tumor shrinkage with lanreotide Autogel 120 mg as primary therapy in acromegaly: results of a prospective multicenter clinical trial. J Clin Endocrinol Metab, 2014. 99(4): p. 1282-90. 136. Caron, P.J., et al., Effects of lanreotide Autogel primary therapy on symptoms and quality-of-life in acromegaly: data from the PRIMARYS study. Pituitary, 2016. 19(2): p. 149-57. 137. Lombardi, G., et al., Efficacy of the new long-acting formulation of lanreotide (lanreotide Autogel) in somatostatin analogue-naive patients with acromegaly. J Endocrinol Invest, 2009. 32(3): p. 202-9. 138. Neggers, S.J., et al., Quality of life in acromegalic patients during long-term somatostatin analog treatment with and without pegvisomant. J Clin Endocrinol Metab, 2008. 93(10): p. 3853-9. 139. Trainer, P.J., et al., A randomized, controlled, multicentre trial comparing pegvisomant alone with combination therapy of pegvisomant and long-acting octreotide in patients with acromegaly. Clin Endocrinol (Oxf), 2009. 71(4): p. 549-57. 140. Rowles, S.V., et al., Quality of life (QOL) in patients with acromegaly is severely impaired: use of a novel measure of QOL: acromegaly quality of life questionnaire. J Clin Endocrinol Metab, 2005. 90(6): p. 3337-41. 141. Ezzat, S., et al., Predictive Markers for Post-Surgical Medical Management of Acromegaly: A Systematic Review and Consensus Treatment Guideline. Endocr Pract, 2019. 142. Galm, B.P., et al., MRI texture analysis in acromegaly and its role in predicting response to somatostatin receptor ligands. Pituitary, 2020. 23(3): p. 212-222. 143. Luque, R.M., S. Park, and R.D. Kineman, Severity of the catabolic condition differentially modulates hypothalamic expression of growth hormone-releasing hormone in the fasted mouse: potential role of neuropeptide Y and corticotropin-releasing hormone. Endocrinology, 2007. 148(1): p. 300-9. 144. Martinez-Fuentes, A.J., et al., Ghrelin is produced by and directly activates corticotrope cells from adrenocorticotropin-secreting adenomas. J Clin Endocrinol Metab, 2006. 91(6): p. 2225-31. 145. Puig-Domingo, M., et al., Magnetic resonance imaging as a predictor of response to somatostatin analogs in acromegaly after surgical failure. J Clin Endocrinol Metab, 2010. 95(11): p. 4973-8. 146. Brzana, J., et al., Growth hormone granulation pattern and somatostatin receptor subtype 2A correlate with postoperative somatostatin receptor ligand response in acromegaly: a large single center experience. Pituitary, 2013. 16(4): p. 490-8. 147. Iacovazzo, D., et al., Factors predicting pasireotide responsiveness in somatotroph pituitary adenomas resistant to first-generation somatostatin analogues: an immunohistochemical study. Eur J Endocrinol, 2016. 174(2): p. 241-50. 148. Losa, M. and J. Bollerslev, Pros and cons in endocrine practice: pre-surgical treatment with somatostatin analogues in acromegaly. Endocrine, 2016. 52(3): p. 451-7. 149. Navarro-Perez, M.P., et al., [Epidemiology of migraine in Spain and Latin America]. Rev Neurol, 2020. 71(3): p. 110-118. 150. Mazziotti, G. and A. Giustina, Glucocorticoids and the regulation of growth hormone secretion. Nat Rev Endocrinol, 2013. 9(5): p. 265-76. 151. Coopmans, E.C., et al., Multivariable Prediction Model for Biochemical Response to First-Generation Somatostatin Receptor Ligands in Acromegaly. J Clin Endocrinol Metab, 2020. 105(9). 152. Bonneville, F., et al., MRI T2 signal intensity and tumor response in patients with GH-secreting pituitary macroadenoma: PRIMARYS post-hoc analysis. Eur J Endocrinol, 2018. 153. Coopmans, E.C., et al., T2-signal intensity, SSTR expression, and somatostatin analogs efficacy predict response to pasireotide in acromegaly. Eur J Endocrinol, 2020. 182(6): p. 595-605. 154. Coopmans, E.C., et al., Potential antitumour activity of pasireotide on pituitary tumours in acromegaly. Lancet Diabetes Endocrinol, 2019. 7(6): p. 425-426.