Desarrollo e implementación de una estrategia de gestión de singularidades para un sistema robótico redundante cooperativo destinado a la asistencia en intervenciones quirúrgicas

  1. Martín A. Landeira Freire 1
  2. Emilio Sánchez 1
  3. Sonia Tejada 1
  4. Ricardo Díez 1
  1. 1 Universidad de Navarra
    info

    Universidad de Navarra

    Pamplona, España

    ROR https://ror.org/02rxc7m23

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2015

Volumen: 12

Número: 1

Páginas: 80-91

Tipo: Artículo

DOI: 10.1016/J.RIAI.2014.05.007 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumen

En este trabajo se presenta un nuevo prototipo de plataforma robótica cooperativa, destinada a la asistencia en intervenciones quirúrgicas de fijación transpedicular lumbar. El uso de sistemas robóticos de asistencia durante la ejecución de procedimientos quirúrgicos convencionales contribuye a la mejora en los resultados de las intervenciones al permitir elevados niveles de precisión y seguridad. Por ello, resulta crucial garantizar la robustez y destreza de los dispositivos empleados, incluso en las proximidades de configuraciones que pudieran introducir inestabilidades en su funcionamiento. Partiendo de esta idea, se ha implementado una estrategia de gestión de singularidades en la plataforma robótica, basada en el uso de un algoritmo de mínimos cuadrados amortiguados con factor de amortiguamiento adaptativo, unido a un método para la optimización de la configuración articular del manipulador redundante empleado, Mitsubishi PA10–7C.

Referencias bibliográficas

  • Barrientos, A., Peñín, L.F., Balaguer, C., Aracil, R., 1997. Fundamentos de Robótica. McGraw-Hill/Interamericana de España S.A. Madrid, España.
  • Buss, S.R., Kim, J.S., 2005. Selectively Damped least squares for inverse kinematics. Journal of Graphics Tools 10, pp. 37-49. DOI: 10.1080/2151237X.2005.10129202.
  • Buss, S.R., 2009. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. Estudio no publicado
  • Chiaverini, S., Oriolo, G., Walker, I.D., 2008. Kinematically redundant manipulators. In: Siciliano, B., Khatib, O. (Eds.). Handbook of Robotics. Springer-Verlag, Berlin Heidelberg, Ch. 11, pp. 245-268
  • Chiaverini, S., 1997. Singularity Robust Task-Priority Redundancy Resolution for Real-Time Kinematic Control of Robot Manipulators. IEEE Transactions on Robotics and Automation 13, pp. 398-410. DOI: 10.1109/70.585902
  • Cho, W., Shimer, A.L., Shen, F.H., 2011. Complications associated with posterior lumbar surgery. Seminars in Spine Surgery 23, pp. 101-113. DOI: 10.1053/j.semss.2010.12.013
  • Cinquin, P., 2011. How today’s robots work and perspectives for the future. Journal of Visceral Surgery 148, pp. e12–e18. DOI: 10.1016/j.jviscsurg.2011.08.003
  • Craig, J., 1986. Introduction to robotics. Mechanics and control. AddisonWesley. Stanford, USA.
  • Faraj, A.A., Webb, J.K., 1997. Early complication of spinal pedicle screw. European Spine Journal 6, pp. 324-326. DOI: 10.1007/BF01142678
  • Flaquer, J., Olaizola, J., Olaizola, J., 2004. Curso de álgebra lineal. Eunsa – Ediciones Universidad de Navarra. Pamplona. España
  • Galvani, C., Horgan, S., 2005. Robots en cirugía general: presente y futuro. Cirugía Española 78, 138-147. DOI: 10.1016/S0009-739X(05)70907-6
  • Gomes, P., 2011. Surgical robotics: Reviewing the past, analyzing the present, imagining the future. Robotics and Computer-Integrated Manufacturing 27, pp. 261-266. DOI: 10.1016/j.rcim.2010.06.009
  • Khatib, O., 1986. Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research 5, pp. 90-98. DOI: 10.1109/ROBOT.1985.1087247
  • Kragic, D., Marayong, P., Li, M., Okamura, A.M., Hager, G.D., 2005. Human– machine collaborative systems for microsurgical applications. The International Journal of Robotics Research 24, pp. 731-741. DOI: 10.1177/0278364905057059
  • Landeira Freire, M.A., Ramos, J.C., Sánchez, E., 2013. Robot-assisted surgical platform for controlled bone drilling: experiments on temperature monitoring for assessment of thermal bone necrosis. In: XIII Mediterranean Conference on Medical and Biological Engineering and Computing. Sevilla, España. 2013.
  • Lanfranco, A.R., Castellanos, A.E., Desai, J.P., Meyers, W.C., 2004. Robotic surgery: a current perspective. Annals of surgery 239, pp. 14-21. DOI: 10.1097/01.sla.0000103020.19595.7d
  • Lee, J., Hwang, I., Kim, K., Choi, S., Chung, W.K., Kim, Y.S., 2009. Cooperative robotic assistant with drill-by-wire end-effector for spinal fusion surgery. Industrial Robot: An International Journal 36, pp. 60-72. DOI: 10.1108/01439910910924684
  • Livernaeaux, P., Nectoux, E., Taleb, C., 2009. The future of robotics in hand surgery. Chirurgie de la main 28, pp. 278-285. DOI: 10.1016/j.main.2009.08.002
  • Maciejewski, A.A., Klein, C.A., 1988. Numerical filtering for the operation of robotic manipulators through kinematically singular configurations. Journal of Robotic Systems 5, pp. 527-552. DOI: 10.1002/rob.4620050603
  • McBeth, P.B., Louw, D.F., Rizun, P.R., Sutherland, G.R., 2004. Robotics in neurosurgery. The American Journal of Surgery 188 (Suppl. to October 2004), pp. 68S–75S. DOI: 10.1016/j.amjsurg.2004.08.004
  • Melo, J., Bertelsen, A., Borro, D., Sánchez, E., 2012. Controlador adaptativo de admitancia para la generación de restricciones virtuales de movimiento en un asistente robótico para cirugía de fijación transpedicular. Dyna 87, pp. 647-654. DOI: 10.6036/DYNAII
  • Nakai, K., Kosuge, K., Hirata, Y., 2002. Control of robot in singular configurations for human-robot coordination. In: IEEE Int. Workshop on Robot and Human Interactive Comunication. Berlin, Alemania. 2002; pp. 356-361
  • Nakamura, Y., Hanafusa, H., 1986. Inverse kinematics solutions with singularity robustness for robot manipulator control. Journal of Dynamic Systems, Measurement and Control 108, pp. 163-171. DOI: 10.1115/1.3143764
  • Nakamura, Y., 1991. Advanced Robotics – Redundancy and Optimization. Addison-Wesley. Stanford. USA.
  • Ortmaeir, T., Weiss, H., Hagn, U., Grebenstein, M., Nickl, M., Albu-Schäffer, A., Otto, C., Jörg, S., Konietschke, R., Le-Tien, L., Hirzinger, G., 2006 (a). A hands-on-robot for accurate placement of pedicle screws. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, pp. 4179-4186. DOI: 10.1109/ROBOT.2006.1642345
  • Ortmaeir, T., Weiss, H., Döbele, S., Schreiber, U., 2006 (b). Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement. The International Journal of Medical Robotics and Computer Assisted Surgery 2, pp. 350-363. DOI: 10.1002/rcs.114
  • Peshkin, M., Colgate, J., Wannasuphoprasit, W., Moore, C., Gillespie, R., Akella, P., 2001. Cobot architecture. IEEE Transactions on Robotics and Automation 17, pp. 377-390. DOI: 10.1109/70.954751
  • Rabinowitz, R.S., Currier, B.L., 1997. Transpedicular screw fixation of the lumbar spine: review and technique. Operative Techniques in Orthopaedics 7, pp. 71-78. DOI: 10.1016/S1048-6666(97)80025-0
  • Rubí, J., Rubio, A., Avello, A., 2002. Involving the operator in a singularity avoidance strategy for a redundant slave manipulator in a teleoperated application. In: IEEE International Conference on Intelligent Robots and Systems. Lausanna, Suiza. 2002. DOI: 10.1109/IRDS.2002.1041724
  • Seraji, H., 1994. Adaptive admittance control: An approach to explicit force control in compliant motion. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2705-2712. DOI: 10.1109/ROBOT.1994.350927
  • Shoham, M., Burman, M., Zehavi, E., Joskowicz, L., Batkilin, E., Kunicher, Y., 2003. Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Transactions on Robotics 19, pp. 893-901. DOI: 10.1109/TRA.2003.817075
  • Sciavicco, L., Siciliano, B., 2001. Modelling and control of robot manipulators. Springer-Verlag. Londres. Reino Unido.
  • Siciliano, B., 1990. Kinematic control of redundant robot manipulators: a tutorial. Journal of Intelligent Robotic Systems 3, pp. 201-212. DOI: 10.1007/BF00126069
  • Tovar-Arriaga, S., Tita, R., Pedraza-Ortega, J.C., Gorrostieta, E., Kalender, W.A., 2011. Development of a robotic FD-CT-guided navigation system for needle placement – preliminary accuracy tests. The International Journal of Medical Robotics and Computer Assisted Surgery 7, pp. 225- 236. DOI: 10.1002/rcs.393
  • Wampler, C.W., Leifer, L.J., 1988. Applications of damped least-squares methods to resolved-rate and resolved-acceleration control of manipulators, Journal of Dynamic Systems, Measurement, and Control 110, pp. 31-38. DOI: 10.1115/1.3152644
  • Wang, J., Li, Y., Zhao, X., 2010. Inverse Kinematics and Control of a 7-DoF Redundant Manipulator Based on the Closed-Loop Algorithm. International Journal of Advanced Robotic Systems 7, pp. 1-9.
  • Wu, H., Gao, Z., Wang, J., Li, Y., Xia, P., Jiang, R., 2010. Pedicle screw placement in the thoracic spine: a randomized comparison study of computer-assisted navigation and conventional techniques. Chinese Journal of Traumatology 13, pp. 201-205. DOI: 10.3760/cma.j.issn.1008-1275.2010.04.002
  • Yoshikawa, T., 1984. Analysis and control of robot manipulators with redundancy. En: Robotics Research the First International Symposium: MIT Press, Ch 8, pp. 735-747