Particle flows in silos, significance of particle shape, stiffness and friction

  1. Pongó, Tivadar
Dirigida por:
  1. Raúl Cruz Hidalgo Director

Universidad de defensa: Universidad de Navarra

Fecha de defensa: 06 de octubre de 2022

Departamento:
  1. (FC) Física y Matemática Aplicada

Tipo: Tesis

Resumen

Los flujos granulares se observan con frecuencia en procesos naturales e industriales. El enfoque de este trabajo se dirige a la comprensión de cómo el cambio de las diferentes propiedades de los granos (forma, fricción y rigidez) influye en el caudal de los silos. Complementariamente, se analiza la dinámica del calentamiento de un gas granular de partículas alargadas. En todos estos escenarios, las simulaciones se combinan con experimentos para calibrar y validar las herramientas numéricas empleadas. En primer lugar, el análisis numérico de la descarga de granos blandos-lisos de un contenedor indicó el desarrollo de un caudal másico dependiente de la altura, lo cual no es habitual en los medios granulares. Nuestro estudio sistemático examinó el espacio de parámetros de fricción y rigidez de las partículas, explorando detalladamente la respuesta macroscópica de este sistema. Complementariamente, el análisis de los campos medios nos ayudó a explicar cuándo y por qué el caudal depende de la altura de la columna. La explicación general incluye: la respuesta del material a los gradientes de presión en el orificio de salida, pero también la forma en que se transmiten los esfuerzos en el sistema. Los resultados nos permitieron proponer argumentos teóricos simples, conectando el caudal macroscópico con el gradiente de presión en el orificio. Como resultado, hemos encontrado una explicación bien razonada de los valores de caudal dependiente de la altura, lo cual ha sido encontrado, experimental y numéricamente, para granos blandos de baja fricción. En segundo lugar, realizamos una investigación numérica del flujo en un silo bidimensional, usando una de mezclas de granos blandos-lisos y duros-rugosos. Partiendo de un sistema homogéneo de granos blandos-lisos, nuestros resultados numéricos reproducen el alto impacto que produce la inclusión de solo un 5% de los granos duros, en el flujo del conjunto de partículas. Además, resaltaron la importancia de la fricción entre granos de diferente tipo, en le desarrollo de este proceso. Cuando los granos durosrugosos son agregados al sistema, el flujo se vuelve más lento, los atascos resultan más frecuentes y la fuerza medida sobre el fondo disminuye. Además, resulta que estos efectos se potencian cuando aumenta la fricción entre especies. También estudiamos, sistemáticamente, la introducción de esfuerzos cortantes, imponiendo la rotación del fondo de un silo plano. Estas condiciones de contorno producen un efecto sorprendente en la descarga de partículas alargadas: el caudal se reduce significativamente, hasta en un 70%. Nuestras simulaciones y la aplicación de los métodos de promediación espacio-temporales revelan las razones subyacentes de esta observación. La velocidad de salida de las partículas es el principal factor que contribuye a esta caída, lo cual correlaciona con la orientación vertical de los granos. Nuestra herramienta numérica permitió explorar la dependencia del caudal � del tamaño del orificio �. En el límite de los orificios grandes, se reprodujo la clásica correlación de ley de potencia � ∼ �5/2. Sin embargo, para aberturas pequeñas obtuvimos una ley de potencia pero con un exponente notablemente mayor. Además, también se encontró que el tamaño de la región denominada ”arco de caída libre” disminuye debido a la rotación. Finalmente, se ha estudiado numéricamente un gas granular agitado formado por partículas alargadas. Este sistema fue estudiado experimentalmente con anterioridad, y nuestro estudio proporciona información adicional sobre el proceso. Por ejemplo, describiendo el comportamiento del sistema en la dirección de calentamiento asimétrico, al que no se accedió experimentalmente. Se estudiaron las distribuciones de velocidad de las partículas, encontrando que ajustan muy bien con distribuciones exponenciales con colas largas, lo cual está en acuerdo con experimentos previos. Además, en la dirección no accesible experimentalmente, obtuvimos colas asimétricas. El colapso de las distribuciones de velocidad nos lleva a concluir que la energía media del sistema escala con el cuadrado de la velocidad característica de la pared.