Functional traits trade-offs define plant population stability worldwide

  1. Conti, Luisa
  2. Valencia, Enrique
  3. Galland, Thomas
  4. Götzenberger, Lars
  5. Lepš, Jan
  6. E-Vojtkó, Anna
  7. Carmona, Carlos P.
  8. Májeková, Maria
  9. Danihelka, Jiří
  10. Dengler, Jürgen
  11. Eldridge, David J.
  12. Estiarte, Marc
  13. García-González, Ricardo
  14. Garnier, Eric
  15. Gómez, Daniel
  16. Hadincová, Věra
  17. Harrison, Susan P.
  18. Herben, Tomáš
  19. Ibáñez, Ricardo
  20. Jentsch, Anke
  21. Juergens, Norbert
  22. Kertész, Miklós
  23. Klumpp, Katja
  24. Krahulec, František
  25. Louault, Frédérique
  26. Marrs, Rob H.
  27. Ónodi, Gábor
  28. Pakeman, Robin J.
  29. Pärtel, Meelis
  30. Peco, Begoña
  31. Peñuelas, Josep
  32. Rueda, Marta
  33. Schmidt, Wolfgang
  34. Schmiedel, Ute
  35. Schuetz, Martin
  36. Skalova, Hana
  37. Šmilauer, Petr
  38. Šmilauerová, Marie
  39. Smit, Christian
  40. Song, MingHua
  41. Stock, Martin
  42. Val, James
  43. Vandvik, Vigdis
  44. Ward, David
  45. Wesche, Karsten
  46. Wiser, Susan K.
  47. Woodcock, Ben A.
  48. Young, Truman P.
  49. Yu, Fei-Hai
  50. Zobel, Martin
  51. de Bello, Francesco
  52. Mostrar todos los/as autores/as +
Revista:
bioRxiv

Año de publicación: 2022

Tipo: Artículo

DOI: 10.1101/2022.06.24.497476 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

1. Ecological theory posits that temporal stability patterns in plant populations are associatedwith differences in species’ ecological strategies. However, empirical evidence is lackingabout which traits, or trade-offs, underlie species stability, specially across differentecosystems.2. To address this, we compiled a global collection of long-term permanent vegetation records(>7000 plots from 78 datasets) from a wide range of habitats and combined this with existingtrait databases. We tested whether the observed inter-annual variability in speciesabundance (coefficient of variation) wasrelated to multiple individual traits and multivariateaxes of trait variations (PCoA axes).3. We found that species with greater leaf dry matter content and seed mass were consistentlymore stable over time (lower variability in species abundance) although other leaf traitsplayed a significant role as well, albeit weaker. Using multivariate axes did not improvepredictions by specific traits.4. Our results confirm existing theory, providing compelling empirical evidence on theimportance of specific traits, which point at ecological trade-offs in different resource useand dispersal strategies, on the stability of plant populations worldwide.

Referencias bibliográficas

  • 10.1111/ele.12157
  • 10.1073/pnas.0600599103
  • (2009), Proceedings of the National Academy of Sciences, 34, pp. 565
  • Bates D , Mächler M , Bolker B , Walker S. 2014. Fitting Linear Mixed-Effects Models using lme4. R package version 1.1. R Foundation for Statistical Computing..
  • Cayuela L , Stein A , Oksanen J. 2017. Taxonstand: taxonomic standardization of plant species names. R package version 2.0. R Foundation for Statistical Computing.
  • (2014), Ecology, 95, pp. 737, 10.1890/13-0751.1
  • (2018), Nature Ecology & Evolution, 2, pp. 1579, 10.1038/s41559-018-0647-7
  • (2021), Trends in Ecology and Evolution, 36, pp. 822, 10.1016/j.tree.2021.05.001
  • 10.1038/nature16489
  • 10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2
  • Garnier E , Navas M , Grigulis K. 2016. Plant functional diversity: organism traits, community structure, and ecosystem properties. Oxford University Press.
  • (2017), Journal of Ecology, 105, pp. 298, 10.1111/1365-2745.12698
  • 10.1086/283244
  • Grime JP . 2001. Plant strategies. Vegetation processes, and ecosystem properties. UK: John wiley and sons.
  • 10.1890/13-0895.1
  • 10.1126/science.aaa1788
  • 10.1111/ele.12928
  • (2020), Global Change Biology, 26, pp. 119, 10.1111/gcb.14904
  • 10.1111/j.1365-2486.2011.02451.x
  • Kraft NJB , Crutsinger GM , Forrestel EJ , Emery NC . 2014. Functional trait differences and the outcome of community assembly: an experimental test with vernal pool annual plants. Oikos: 1391–1399.
  • 10.1111/1365-2745.12187
  • 10.1046/j.1365-2435.2002.00664.x
  • 10.1111/j.0030-1299.2004.13023.x
  • (2018), Ecology, 99, pp. 360, 10.1002/ecy.2065
  • 10.1007/BF00120678
  • 10.1111/j.1365-2486.2011.02624.x
  • MacArthur RH , Wilson EO . 1967. The theory of island biogeography. Princeton University Press.
  • 10.1890/13-1880.1
  • 10.1038/35012234
  • 10.1111/j.1365-2745.2010.01652.x
  • 10.1111/j.0030-1299.2006.14194.x
  • (2013), Methods in Ecology and Evolution, 4, pp. 133, 10.1111/j.2041-210x.2012.00261.x
  • Nakagawa S , Johnson PCD , Schielzeth H. 2017. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of The Royal Society Interface 14.
  • 10.2307/1940646
  • (2013), Australian Journal of Botany, 23, pp. 167
  • 10.1038/307321a0
  • 10.1111/j.1600-0706.2013.00338.x
  • 10.1111/1365-2745.12211
  • (2022), Journal of Vegetation Science, 33, pp. e13115
  • 10.1111/ele.12019
  • 10.2307/2389893
  • 10.1038/367363a0
  • 10.1046/j.1365-2745.1999.00405.x
  • 10.1073/pnas.1920405117
  • (2020), Journal of Vegetation Science, 31, pp. 792, 10.1111/jvs.12916
  • 10.1086/284795
  • 10.1023/A:1004327224729
  • 10.1038/nature02403