Design and implementation of predictive models based on radiomics to assess response to immunotherapy in non-small-cell lung cancer
- M. Corral Bolaños 1
- B. Farina 2
- A.D. Ramos Guerra 3
- C. Palacios Miras 4
- G. Gallardo Madueño 5
- A. Muñoz-Barrutia 6
- G. R. Peces-Barba 7
- L. M. Seijo 8
- J. Corral 8
- I. Gil Bazo 9
- M. Dómine Gómez 4
- M. J. Ledesma-Carbayo 2
- 1 Universidad Politécnica de Madrid, Madrid
-
2
Universidad Politécnica de Madrid
info
- 3 Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain
- 4 Hospital Universitario Fundación Jiménez Díaz & CIBERES, Madrid, Spain
-
5
Universidad de Navarra
info
-
6
Universidad Carlos III de Madrid
info
-
7
Fundación Jiménez Díaz
info
- 8 Clínica Universidad de Navarra & CIBERES & CIBERONC, Madrid, Spain
- 9 Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Roberto Hornero Sánchez (ed. lit.)
- Jesús Poza Crespo (ed. lit.)
- Carlos Gómez Peña (ed. lit.)
- María García Gadañón (ed. lit.)
Verlag: Grupo de Ingeniería Biomédica ; Universidad de Valladolid
ISBN: 978-84-09-25491-0
Datum der Publikation: 2020
Seiten: 181-184
Kongress: Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB (38. 2020. Valladolid)
Art: Konferenz-Beitrag
Zusammenfassung
Lung cancer is the leading cause of cancer-related deaths in Europe. Immunotherapy treatments have been proved as the new standard of care for stage III-IV non-small cell lung cancer patients. However, the treatments vary in success, and there is not a reliable biomarker. This retrospective project aimed to develop a predictive model based on radiomics through machine learning or deep learning techniques to assess the response to the treatment, understood as the progression (or not) of the disease. Then, the study was complemented with an analysis of the progression-free survival time and an attempt of association with biological data. We used the basal computed tomography images of the primary tumour lesions from a cohort with 84 patients with IV stage nonsmall- cell lung cancer. The best performance model reached an AUC of 0.80 – 90 % CI [0.62, 0.99]. Our results suggest that the radiomics models may be useful for patient classification