Robot nadador con flagelo flexible basado en actuación únicaPrueba de propulsión en condiciones de bajo número de Reynolds

  1. Tejado, Inés 1
  2. Rebollo-Gómez Coronado, José Antonio 1
  3. Nuevo-Gallardo, Cristina 1
  4. Vinagre, Blas M. 1
  1. 1 Universidad de Extremadura
    info

    Universidad de Extremadura

    Badajoz, España

    ROR https://ror.org/0174shg90

Livre:
XLIV Jornadas de Automática: libro de actas: Universidad de Zaragoza, Escuela de Ingeniería y Arquitectura, 6, 7 y 8 de septiembre de 2023, Zaragoza
  1. Ramón Costa Castelló (coord.)
  2. Manuel Gil Ortega (coord.)
  3. Óscar Reinoso García (coord.)
  4. Luis Enrique Montano Gella (coord.)
  5. Carlos Vilas Fernández (coord.)
  6. Elisabet Estévez Estévez (coord.)
  7. Eduardo Rocón de Lima (coord.)
  8. David Muñoz de la Peña Sequedo (coord.)
  9. José Manuel Andújar Márquez (coord.)
  10. Luis Payá Castelló (coord.)
  11. Alejandro Mosteo Chagoyen (coord.)
  12. Raúl Marín Prades (coord.)
  13. Vanesa Loureiro-Vázquez (coord.)
  14. Pedro Jesús Cabrera Santana (coord.)

Éditorial: Servizo de Publicacións ; Universidade da Coruña

ISBN: 9788497498609

Année de publication: 2023

Pages: 773-778

Congreso: Jornadas de Automática (44. 2023. Zaragoza)

Type: Communication dans un congrès

Résumé

Within low Reynolds number (Re) environments, swimming robots need to perform non-reciprocal motions to propel themselves. The fundamental method to achieve this type of motion is by generating progressive waves (also known as traveling waves) that travel along the robot flagellum from the head to the free end. This work focuses on a simple way to generate progressive waves under low Re conditions that consists of the periodic oscillation of a passive flexible flagellum. For propulsion testing, a prototype of single-acting swimming robot based on the scotch-yoke-lever mechanism is presented, which allows to convert the rotational motion of a motor into an angular oscillation traveling along the flagellum. Also, an image-based algorithm is developed in MATLAB to identify the motion performed by the robot, i.e., to determine the characteristics of the swimmer in propulsion. Experimental results show that the robot is able to perform a non-reciprocal motion under low Re conditions.