Characterization of the human Nα-terminal acetyltransferase B enzymatic complex

  1. Ametzazurra, Amagoia
  2. Gázquez, Cristina
  3. Lasa, Marta
  4. Larrea, Esther
  5. Prieto, Jesús
  6. Aldabe, Rafael
Revista:
BMC Proceedings

ISSN: 1753-6561

Año de publicación: 2009

Volumen: 3

Número: S6

Tipo: Artículo

DOI: 10.1186/1753-6561-3-S6-S4 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: BMC Proceedings

Resumen

ACKGROUND: Human Nalpha-acetyltransferase complex B (hNatB) is integrated by hNaa20p (hNAT5/hNAT3) and hNaa25p (hMDM20) proteins. Previous data have shown that this enzymatic complex is implicated in cell cycle progression and carcinogenesis. In yeast this enzyme acetylates peptides composed by methionine and aspartic acid or glutamic acid in their first two positions respectively and it has been shown the same specificity in human cells.METHODS: We have silenced hNAA20 expression in hepatic cell lines using recombinant adenoviruses that express specific siRNAs against this gene and analyzed cell cycle progression and apoptosis induction after this treatment. Immunopurified hNatB enzymatic complexes from human cell lines were used for analyzing hNatB in vitro enzymatic activity using as substrate peptides predicted to be acetylated by NatB.RESULTS: hNAA20 silencing in hepatic cell lines reduces cell proliferation in a p53 dependent and independent manner. At the same time this treatment sensitizes the cells to a proapototic stimulus. We have observed that the hNatB complex isolated from human cell lines can acetylate in vitro peptides that present an aspartic or glutamic acid in their second position as has been described in yeast.CONCLUSION: hNatB enzymatic complex is implicated in cell cycle progression but it exerts its effects through different mechanisms depending on the cellular characteristics. This is achievable because it can acetylate a great number of peptides composed by an aspartic or glutamic acid at their second residue and therefore it can regulate the activity of a great number of proteins.

Referencias bibliográficas

  • Polevoda B, Sherman F: Composition and function of the eukaryotic N-terminal acetyltransferase subunits. Biochem Biophys Res Commun. 2003, 308 (1): 1-11. 10.1016/S0006-291X(03)01316-0.
  • Polevoda B, Sherman F: N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J Mol Biol. 2003, 325 (4): 595-622. 10.1016/S0022-2836(02)01269-X.
  • Polevoda B, Cardillo TS, Doyle TC, Bedi GS, Sherman F: Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal acetyltransferase and of actin and tropomyosin. J Biol Chem. 2003, 278 (33): 30686-30697. 10.1074/jbc.M304690200.
  • Singer JM, Shaw JM: Mdm20 protein functions with Nat3 protein to acetylate Tpm1 protein and regulate tropomyosin-actin interactions in budding yeast. Proc Natl Acad Sci USA. 2003, 100 (13): 7644-7649. 10.1073/pnas.1232343100.
  • Starheim KK, Arnesen T, Gromyko D, Ryningen A, Varhaug JE, Lillehaug JR: Identification of the human N(alpha)-acetyltransferase complex B (hNatB): a complex important for cell-cycle progression. Biochem J. 2008, 415 (2): 325-331. 10.1042/BJ20080658.
  • Polevoda B, Norbeck J, Takakura H, Blomberg A, Sherman F: Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. Embo J. 1999, 18 (21): 6155-6168. 10.1093/emboj/18.21.6155.
  • Skoumpla K, Coulton AT, Lehman W, Geeves MA, Mulvihill DP: Acetylation regulates tropomyosin function in the fission yeast Schizosaccharomyces pombe. J Cell Sci. 2007, 120 (Pt 9): 1635-1645. 10.1242/jcs.001115.
  • Abe A, Saeki K, Yasunaga T, Wakabayashi T: Acetylation at the N-terminus of actin strengthens weak interaction between actin and myosin. Biochem Biophys Res Commun. 2000, 268 (1): 14-19. 10.1006/bbrc.1999.2069.
  • Rubenstein PA, Martin DJ: NH2-terminal processing of Drosophila melanogaster actin. Sequential removal of two amino acids. J Biol Chem. 1983, 258 (18): 11354-11360.
  • Martin DJ, Rubenstein PA: Alternate pathways for removal of the class II actin initiator methionine. J Biol Chem. 1987, 262 (13): 6350-6356.
  • Schmitz S, Clayton J, Nongthomba U, Prinz H, Veigel C, Geeves M, Sparrow J: Drosophila ACT88F indirect flight muscle-specific actin is not N-terminally acetylated: a mutation in N-terminal processing affects actin function. J Mol Biol. 2000, 295 (5): 1201-1210. 10.1006/jmbi.1999.3407.
  • Ametzazurra A, Larrea E, Civeira MP, Prieto J, Aldabe R: Implication of human N-alpha-acetyltransferase 5 in cellular proliferation and carcinogenesis. Oncogene. 2008, 27 (58): 7296-7306. 10.1038/onc.2008.332.
  • Arnesen T, Gromyko D, Pendino F, Ryningen A, Varhaug JE, Lillehaug JR: Induction of apoptosis in human cells by RNAi-mediated knockdown of hARD1 and NATH, components of the protein N-alpha-acetyltransferase complex. Oncogene. 2006, 25 (31): 4350-4360. 10.1038/sj.onc.1209469.
  • Durocher Y, Perret S, Kamen A: High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res. 2002, 30 (2): E9-10.1093/nar/30.2.e9.
  • Sugiura N, Adams SM, Corriveau RA: An evolutionarily conserved N-terminal acetyltransferase complex associated with neuronal development. J Biol Chem. 2003, 278 (41): 40113-40120. 10.1074/jbc.M301218200.
  • Arnesen T, Anderson D, Baldersheim C, Lanotte M, Varhaug JE, Lillehaug JR: Identification and characterization of the human ARD1-NATH protein acetyltransferase complex. Biochem J. 2005, 386 (Pt 3): 433-443.
  • Fisher TS, Etages SD, Hayes L, Crimin K, Li B: Analysis of ARD1 function in hypoxia response using retroviral RNA interference. J Biol Chem. 2005, 280 (18): 17749-17757. 10.1074/jbc.M412055200.
  • Xu WS, Parmigiani RB, Marks PA: Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007, 26 (37): 5541-5552. 10.1038/sj.onc.1210620.
  • Bode AM, Dong Z: Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer. 2004, 4 (10): 793-805. 10.1038/nrc1455.
  • Lavin MF, Gueven N: The complexity of p53 stabilization and activation. Cell Death Differ. 2006, 13 (6): 941-950. 10.1038/sj.cdd.4401925.
  • Ponchel F, Puisieux A, Tabone E, Michot JP, Froschl G, Morel AP, Frebourg T, Fontaniere B, Oberhammer F, Ozturk M: Hepatocarcinoma-specific mutant p53-249ser induces mitotic activity but has no effect on transforming growth factor beta 1-mediated apoptosis. Cancer Res. 1994, 54 (8): 2064-2068.
  • Hallstrom TC, Nevins JR: Balancing the decision of cell proliferation and cell fate. Cell Cycle. 2009, 8 (4): 532-535.
  • Ow YP, Green DR, Hao Z, Mak TW: Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol. 2008, 9 (7): 532-542. 10.1038/nrm2434.
  • Arnesen T, Betts MJ, Pendino F, Liberles DA, Anderson D, Caro J, Kong X, Varhaug JE, Lillehaug JR: Characterization of hARD2, a processed hARD1 gene duplicate, encoding a human protein N-alpha-acetyltransferase. BMC Biochem. 2006, 7: 13-10.1186/1471-2091-7-13.
  • Malen H, Lillehaug JR, Arnesen T: The protein Nalpha-terminal acetyltransferase hNaa10p (hArd1) is phosphorylated in HEK293 cells. BMC Res Notes. 2009, 2: 32-10.1186/1756-0500-2-32.
  • Polevoda B, Hoskins J, Sherman F: Properties of Nat4, an N{alpha}-Acetyltransferase of Saccharomyces cerevisae that Modifies N termini of Histones H2A and H4. Mol Cell Biol. 2009, 29: 2913-2924. 10.1128/MCB.00147-08.
  • Borras-Cuesta F, Golvano J, Sarobe P, Lasarte JJ, Prieto I, Szabo A, Guillaume JL, Guillet JG: Insights on the amino acid side-chain interactions of a synthetic T-cell determinant. Biologicals. 1991, 19 (3): 187-190. 10.1016/1045-1056(91)90033-G.