Automatic Defect Detection and Classification of Terminals in a Bussed Electrical Center Using Computer Vision

  1. Osslan Osiris Vergara Villegas 1
  2. Vianey Guadalupe Cruz Sánchez 1
  3. Humberto de Jesús Ochoa Domínguez 1
  4. Jorge Luis García-Alcaraz 1
  5. Ricardo Rodriguez Jorge 1
  1. 1 Universidad Autónoma de Ciudad Juárez
    info

    Universidad Autónoma de Ciudad Juárez

    Ciudad Juárez, México

    ROR https://ror.org/05fj8cf83

Libro:
Handbook of Research on Managerial Strategies for Achieving Optimal Performance in Industrial Processes

Editorial: IGI Global

ISSN: 2327-350X 2327-3518

ISBN: 9781522501305 9781522501312

Año de publicación: 2016

Páginas: 241-266

Tipo: Capítulo de Libro

DOI: 10.4018/978-1-5225-0130-5.CH012 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

In this chapter, an intelligent Computer Vision (CV) system, for the automatic defect detection and classification of the terminals in a Bussed Electrical Center (BEC) is presented. The system is able to detect and classify three types of defects in a set of the seven lower pairs of terminals of a BEC namely: a) twisted; b) damaged and c) missed. First, an environment to acquire a total of 56 training and test images was created. After that, the image preprocessing is performed by defining a Region Of Interest (ROI) followed by a binarization and a morphological operation to remove small objects. Then, the segmentation stage is computed resulting in a set of 12-14 labeled zones. A vector of 56 features is extracted for each image containing information of area, centroid and diameter of all terminals segmented. Finally, the classification is performed using a K-Nearest Neighbor (KNN) algorithm. Experimental results on 28 BEC images have shown an accuracy of 92.8% of the proposed system, allowing changes in brightness, contrast and salt and pepper noise.

Referencias bibliográficas

  • 10.1016/j.proeng.2012.01.924
  • 10.3390/s140202476
  • 10.1016/j.patrec.2011.06.006
  • 10.1016/j.compag.2014.04.001
  • 10.1007/978-3-319-04693-8_1
  • 10.1088/0957-0233/18/9/023
  • Bulnes, F., Usamentiaga, R., García, D., & Molleda, J. (2016). An efficient method for defect detection during the manufacturing of web materials. Journal of Intelligent Manufacturing,27(2), 431-445. doi: 10.1007/s10845-014-0876-9
  • 10.1016/j.engappai.2015.03.010
  • 10.1007/s00170-014-6442-y
  • Dejen, J., & Ikeda, T. (2015). Bused electrical center for electric or hybrid electric vehicle. U.S. Patent 20150229071 A1.
  • D.Forsyth, (2012), Computer Vision: A Modern approach
  • T.Funahashi, (2015), Frontiers of Computer Vision, 1, pp. 1
  • 10.1109/TIM.2013.2258242
  • R.Gonzalez, (2009), Digital image processing
  • 10.1145/1656274.1656278
  • S.Huang, (2015), Computers in Industry, 66, pp. 1, 10.1016/j.compind.2014.10.006
  • 10.1016/j.jbi.2014.02.018
  • 10.1007/s00170-004-2165-9
  • 10.1016/j.autcon.2013.01.009
  • 10.1109/CVPR.2015.7298738
  • 10.1016/j.rcim.2011.03.007
  • Mark, J., Schweitzer, B., Donald, B., & Wagner, B. (2000). Bussed electrical center assembly with connector pre-set. U.S. Patent 6126458 A.
  • 10.1016/j.jfoodeng.2013.03.019
  • Rouhiainen, T. (2015). Automated optical inspection in automotive assembly line. (Master Thesis). Tampere University of Technology, Tampere, Finland.
  • 10.1016/j.asoc.2015.05.016
  • 10.1016/j.inffus.2011.02.005
  • 10.1016/j.patcog.2014.03.008
  • 10.1016/j.measurement.2011.12.018
  • 10.1007/978-1-84882-935-0
  • 10.1016/j.ins.2014.02.030
  • 10.1109/TCPMT.2014.2334691
  • B.Zhang, (2014), Food Research International, 62, pp. 326, 10.1016/j.foodres.2014.03.012
  • 10.1016/j.neucom.2013.07.038