Extracting the QRS Complexity and R Beats in Electrocardiogram Signals Using the Hilbert Transform

  1. Rodríguez, Ricardo 2
  2. Mexicano, Adriana 1
  3. Cervantes, Salvador 1
  4. Bila, Jiri 3
  5. Ponce, Rafael 1
  1. 1 Polytechnic University of the State of Morelos, Morelos, Mexico
  2. 2 Technological University of Ciudad Juarez, Chihuahua, Mexico
  3. 3 Czech Technical University in Prague, Prague, Czech Republic
Libro:
ISCS 2013: Interdisciplinary Symposium on Complex Systems

Editorial: Springer

ISSN: 2194-7287 2194-7295

ISBN: 978-3-642-45437-0 978-3-642-45438-7

Año de publicación: 2014

Páginas: 203-213

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-642-45438-7_20 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

This paper presents a novel approach for the problem of detecting and extracting the QRS complex of electrocardiogram signals for different kinds of arrhythmias. First, an autocorrelation function is used in order to obtain the period of an electrocardiagram signal and then the Hilbert transform is applied to obtain R-peaks and beats. Twenty three different records extracted from the MIT-BIH arrhythmia database were used to validate the proposed approach. In this testing has been observed a 99.9 % of accuracy in detecting the QRS complexity, being a positive result in comparison with other recent researches.

Referencias bibliográficas

  • Karsikas, M.: New methods for vectorcardiographic signal processing, Acta universitatis Oululensis, University of Oulu. PhD thesis, Oulu (2011)
  • Goya-Esteban, R., Barquero-Perez, O., Alonso-Atienza, F., Ervess, E., Requena-Carrion, J., Garcia-Albeola, A., Rojo-Alvarez, J.L.: A review on recent patents in digital processing for cardiac electric signals (I): from basic systems to arrhythmia analysis. Recent Pat. Biomed. Eng. 2, 22–31 (2009)
  • Asirvadam, V.S., Pisal, K.S., Izhar, L.I., Khuzi, N.A.A.M.: ECG viewed using grayscale patterns. In: Proceedings of the International Conference on Man-Machine Systems, pp. 11–13, Malaysia (2009)
  • Bagde, S., Raikwar, P.: Detection of QRS complexes of ECG waveform based on empirical mode decomposition using MATLAB. Inte. J. Eng. Innovative Technol. 1(1), 14–17 (2012)
  • Karsikas, M., Huikuri, H., Perkiömäki, J.S., Lehtola, L., Seppänen, T.: Influence of paper electrocardiogram digitizing on T wave and QRS complex morphology parameters. Ann. Noninvasive Electrocardiol. 12l, 282–290 (2007)
  • Lehtola, L., Karsikas, M., Koskinen, M., Huikuri, H., Seppänen, T.: Effects of noise and filtering on SVD-based morphological parameters of the T wave in the ECG. J. Med. Eng. Technol. 32, 400–407 (2008)
  • Zhao, Z., Yang, L., Chen, D., Luo, Y.: A human ECG identification system based on ensemble empirical mode decomposition. Sensors 13, 6832–6864 (2013)
  • Shandilya, S., Ward, K., Kurz, M., Najarian, K.: Non-linear dynamical signal characterization for prediction of defibrillation success through machine learning. BMC Med. Inform. Decis. Making 12(116), 1–9 (2012)
  • Niwas, I., Selva, S., Sadasivam, V.: Artificial neural network based automatic cardiac abnormalities classification. In: Proceedings of the Sixth International Conference on Computational Intelligence and Multimedia Applications, pp. 41–46 (2009)
  • Illanes, A., Zhang, Q.: An algorithm for QRS onset and offset detection in single lead electrocardiogram records. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale, pp. 541–544 (2007)
  • Benitez, D., Gaydecki, P., Zaidi, A., Fitzpatrick, A.: The use of the hilbert transform in ECG signal analysis. Comput. Biol. Med. 31, 399–406 (2001)
  • Özbay, Y.: A new approach to detection of ECG arrhythmias: complex discrete wavelet transform based complex valued artificial neural network. J. Med. Syst. 33, 435–445 (2009)
  • Ebrahimzadeh, A., Khazaee, A.: Detection of premature ventricular contractions using MLP neural networks: a comparative study. Measurement 43(1), 103–112 (2010)
  • Monasterio, V., Laguna, P., Martnez, J.: Multilead analysis of T-Wave alternans in the ECG using principal component analysis. IEEE Trans. Biomed. Eng. 56, 1880–1890 (2009)
  • Jezewski, J., Roj, D., Wrobel, J., Horoba, K.: A novel technique for fetal heart rate estimation from doppler ultrasound signal. Biomed. Eng. Online 10, 92–92 (2011)
  • Zong, C., Chetouani, M.: Hilbert-Huang transform based physiological signals analysis for emotion recognition. In: Proceedings of the IEEE International Symposium on Signal Processing and Information Technology, pp. 334–339 (2009)
  • Kohli, S., Makwana, N., Mishra, N., Sagar, B.: Hilbert transform based adaptive ECG R-Peak detection technique. Int. J. Electr. Comput. Eng. 2(5), 639–643 (2012)
  • Kentta, T., Karsikas, M., Juhani, M., Juha, S., Seppanen, T., Kiviniemi, A., Nieminen, T., Lehtimaki, T., Nikus, K., Lehtinen, R., Viik, J., Kahonen, M., Huikuri, H.: QRS-T morphology measured from exercise electrocardiogram as a predictor of cardiac mortality. Europace 13, 701–707 (2011)
  • Acar, B., Yi, G., Hnatkova, K.: Spatial, temporal and wavefront direction characteristics of 12-lead T-wave morphology. Med. biol. Eng. comput. 37, 574–584 (1999)
  • MIT-BIH Database distribution, http://www.physionet.org/physiobank/database/mitdb
  • Kotas, M.: Projective filtering of time-aligned ECG beats for repolarization duration measurement. Comput. Methods Program Biomed. 85(2), 115–123 (2007)
  • Yeh, Y.C., Wang, W.J.: QRS complex detection for ECG signal: the difference operation method. Comput. Methods Program Biomed. 91(3), 245–254 (2008)
  • Prakash, J.: Analysis of ECG signal for Detection of Cardiac Arrhythmias. National Institute Of Technology, Master of technology thesis, Rourkela (2011)