Smectic phases in rod-coil diblock copolymers

  1. Raul Cruz Hidalgo 2
  2. D E Sullivan 1
  3. Jeff Z Y Chen 3
  1. 1 University of Guelph
    info

    University of Guelph

    Guelph, Canadá

    ROR https://ror.org/01r7awg59

  2. 2 Universitat de Girona
    info

    Universitat de Girona

    Girona, España

    ROR https://ror.org/01xdxns91

  3. 3 University of Waterloo
    info

    University of Waterloo

    Waterloo, Canadá

    ROR https://ror.org/01aff2v68

Journal:
Journal of Physics: Condensed Matter

ISSN: 0953-8984 1361-648X

Year of publication: 2007

Volume: 19

Issue: 37

Pages: 376107

Type: Article

DOI: 10.1088/0953-8984/19/37/376107 WoS: WOS:000249255300022 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Journal of Physics: Condensed Matter

Abstract

A fluid of rod - coil diblock copolymers, modelled as wormlike chains, is treated by using self-consistent field theory. The 'rod' and 'coil' sections of each molecule are distinguished by their degrees of flexibility (or persistence lengths), but are otherwise identical. Interactions between molecules are taken to be of the excluded-volume type, described by the Onsager second-virial approximation. The theory is applied to liquid-crystalline phases which are either uniform (i.e., isotropic and nematic) or exhibit a uniaxial one-dimensional spatial variation (smectic-A). This work extends an earlier study (Duchs and Sullivan 2002 J. Phys.: Condens. Matter 14 12189) to account for the smectic-A phase at arbitrarily large values of the relative rod fraction. The smectic phase is found to have a partial bilayer morphology, exhibiting nearly complete interdigitation of the rod-like sections and little interdigitation of the coil sections.

Bibliographic References

  • Bates F S and Fredrickson G H 1990 Annu. Rev. Phys. Chem. 41 525
  • Chen J T, Thomas E L, Ober C K and Hwang S S 1995 Macromolecules 28 1688
  • Chen J T, Thomas E L, Ober C K and Mao G-P 1996 Science 273 343
  • Radzilowski L H, Carragher B O and Stupp S I 1997 Macromolecules 30 2110
  • Tu Y, Wan X, Zhang H, Fan X, Chen X, Zhou Q-F and Chau K 2003 Macromolecules 36 6565
  • Minich E A, Nowak A P, Deming T J and Pochan D J 2004 Polymer 45 1951
  • Semenov A N and Vasilenko S V 1986 Sov. Phys.-JETP 63 70
  • Müller M and Schick M 1996 Macromolecules 29 8900
  • Matsen M W and Barrett C 1998 J. Chem. Phys. 109 4108
  • Pryamitsyn V and Ganesan V 2004 J. Chem. Phys. 120 5824
  • Yamazaki N, Motoyama M, Nonomura M and Ohta T 2004 J. Chem. Phys. 120 3949
  • Düchs D and Sullivan D E 2002 J. Phys.: Condens. Matter 14 12189
  • Wessels P P F and Mulder B M 2004 Phys. Rev. E. 70 031503
  • Semenov A N and Khokhlov A R 1988 Sov. Phys.-Usp. 31 986
  • Fraden S 1995 Observation, Prediction, and Simulation of Phase Transitions in Complex Fluids ed M Baus, L F Rull and J P Ryckaert (Dordrecht: Kluwer-Academic) p 113
  • Dogic Z and Fraden S 1997 Phys. Rev. Lett. 78 2417
  • Matsen M W 1996 J. Chem. Phys. 104 7758
  • Mazars M, Levesque D and Weis J-J 1997 J. Chem. Phys. 106 6107
  • Saito N, Takahashi K and Yunoki Y 1967 J. Phys. Soc. Japan 22 219
  • Matsen M W 2002 J. Phys.: Condens. Matter 14 R21
  • Schmid F 1998 J. Phys.: Condens. Matter 10 8105
  • Chen Z Y 1993 Macromolecules 26 3419
  • Cui S-M, Akcakir O and Chen Z Y 1995 Phys. Rev. E 51 4548
  • Hidalgo R C, Sullivan D E and Chen J Z Y 2005 Phys. Rev. E 71 041804
  • Morse D A and Fredrickson G H 1994 Phys. Rev. Lett. 73 3235
  • Netz R R and Schick M 1996 Phys. Rev. Lett. 77 302
  • Li X-J and Schick M 2000 Biophys. J. 78 34
  • Duque D, Li X-J, Katsov K and Schick M 2002 J. Chem. Phys. 116 10478
  • Poniewierski A 1992 Phys. Rev. A 45 5605
  • Casey A and Harrowell P 1999 J. Chem. Phys. 110 12183
  • McBride C and Vega C 2002 J. Chem. Phys. 117 10370
  • Chen J Z Y, Sullivan D E and Yuan X 2005 Europhys. Lett. 72 89
  • Chen J Z Y, Sullivan D E and Yuan X 2007 Macromolecules 40 1187
  • Katzav E, Adda-Bedia M and Boudaoud A 2006 Proc. Natl Acad. Sci. USA 103 18900