Desempeño a Flexión del Concreto Reforzado con Fibras Plásticas Recicladas
- Alejandro Meza-de Luna 1
- Kaur Gurbir 2
- Héctor Javier Preciado-Martínez 1
- 1 Tecnológico Nacional de México/IT de Aguascalientes, México
- 2 Thapar University, India
ISSN: 1405-5597
Año de publicación: 2021
Número: 61
Tipo: Artículo
Otras publicaciones en: ConCiencia Tecnológica
Resumen
Con un ritmo cada vez mayor, el plástico desechado ha llegado a ser uno de las preocupaciones del medio ambiente en el mundo. En este estudio, desechos de botellas plásticas de tereftalato de polietileno (PET) son usadas para producir fibras recicladas, las cuales se mezclaron con el concreto para producir muestras prismáticas. El desempeño a flexión, en términos de parámetros de resistencia y rigidez a flexión de muestras de concreto reforzado con diferente contenido de fibras de PET, fue obtenido por ensayos de especímenes bajo un arreglo de carga central. La rigidez a flexión fue determinada acorde al JSCE. También, elementos compuestos con fibras vírgenes y sin fibras (mezcla de control) fueron ensayados para realizar una evaluación comparativa. Los resultados sugieren que la adición de fibras de PET en el concreto generó similar o superior resistencia residual comparada con el concreto reforzado con fibras vírgenes. Sin embargo, el concreto con bajo contenido de fibras recicladas no es recomendado debido a su limitada resistencia residual y ductilidad.
Referencias bibliográficas
- Albertsson A.C. and Huang S.J. (1995) Degradable polymers, recycling and plastics waste management. Royal Institute of Technology, Stockholm, Sweden, University of Connecticut, Storrs, Connecticut, Marcel Dekker, July 1995. ISBN: 9780824796686.
- Thompson R.C., Moore C.J., Vom Saal F.S., et al. Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B-Biological Sciences, volume 364 (issue 1526), July, 2009. Doi: 10.1098/rstb.2009.0053.
- Guern C.L. Plastic Pollution [on line] [Access: June 5, 2020]. Available on: http://plasticpollution.org.
- Fernandez M.E., Paya J., Borrachero M.V., et al. Degradation Process of Postconsumer Waste Bottle Fibers Used in Portland Cement-Based Composites. Journal of Materials in Civil Engineering, volume 29 (issue 10), October, 2017. Doi: 10.1061/(ASCE)MT.1943-5533.0002007.
- Galloway T. Plastic bottles and moral codes. Marine Pollution Bulletin, volume 56 (issue 2), February, 2008. Doi: 10.1016/j.marpoibul.2007.11.012.
- Ahmadinia E., Zargar M., Karim M.R., et al. Using waste plastic bottles as additive for stone mastic asphalt. Materials & design, volume 32 (issue 10), December, 2011. Doi: 10.1016/j.matdes.2011.06.016.
- Ochi T., Okubo S. and Fukui K. Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement & Concrete Composites, volume 29 (issue 6), July, 2007. Doi: 10.1016/j.cemconcomp.2007.02.002.
- Dutta S., Nadaf M.B., and Mandal J. N. An Overview on the Use of Waste Plastic Bottles and Fly Ash in Civil Engineering Applications. Procedia Environmental Sciences, International Conference on Solid Waste Management, Mumbay, India. Doi: 10.1016/j.proenv.2016.07.067.
- Orset C., Barret N. and Lemaire A. How consumers of plastic water bottles are responding to environmental policies?. Waste Management, volume 61, March, 2017. Doi: 10.1016/j.wasman.2016.12.034
- Hannawi K., Prince W., Bernard S.K. Strain Capacity and Cracking Resistance Improvement in Mortars by Adding Plastic Particles. Journal of Materials in Civil Engineering, volume 25 (issue 11), November, 2013. Doi: 10.1061/(ASCE)MT.1943-5533.0000707.
- Rebeiz K.S., Serhal S.P. and Fowler D.W. Structural behavior of polymer concrete beams using recycled plastic. Journal of Materials in Civil Engineering, volume 10 (issue 1), February, 1994. Doi: 10.1061/(ASCE)0899-1561(1994)6:1(150).
- Modarres A. and Hamedi H. Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes. Materials & Design, volume 6, September, 2014. Doi: 10.1016/j.matdes.2014.04.046.
- Meza, A., Siddique, S., 2019. Effect of aspect ratio and dosage on the flexural response of FRC with recycled fiber. Constr. Build. Mater. 213, 286–291. https://doi.org/10.1016/j.conbuildmat.2019.04.081
- Yin S., Tuladhar R., Riella J., et al. Comparative evaluation of virgin and recycled polypropylene fibre reinforced concrete. Construction and Building Materials, volume 114, July, 2016. Doi: 10.1016/j.conbuildmat.2016.03.162.
- Borg R.P., Baldacchino O., and Ferrara L. Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Construction and Building Materials, volume 108, April, 2016. Doi: 10.1016/j.conbuildmat.2016.01.029.
- Altoubat S.A., Roesler J.R., Lange D.A. et al. Rieder-Klaus A. Simplified method for concrete pavement design with discrete structural fibers. Construction and Building Materials, volume 22 (issue 3), March, 2008. Doi: 10.1016/j.conbuildmat.2006.08.008.
- Soutsos M.N. and Lampropoulos A.P. Flexural performance of fibre reinforced concrete made with steel and synthetic fibres. Construction and Building Materials, volume 36, November, 2012. Doi: 10.1016/j.conbuildmat.2012.06.042.
- Meza A., Moreno R., Beltrán C.A., et al. Mechanical behavior of urban plastic with tensional load. Conciencia tecnológica, volume 54, November, 2017. Available on: http://www.redalyc.org/articulo.oa?id=94454631003
- Meza A., Ahmed F.U. Anisotropy and bond behaviour of recycled Polyethylene terephthalate (PET) fibre as concrete reinforcement. Construction and Building Materials, 265 (2020), 120331. https://doi.org/10.1016/j.conbuildmat.2020.120331
- Euclid chemical. Technical sheet [on line] [Access: June 14, 2020]. Available on: https://www.euclidchemical.com.
- Meza A., Ortiz J.A., Peralta L., et al. Experimental mechanical characterization of steel and polypropylene fiber reinforced concrete. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, volume 37 (issue 2), November, 2014.
- ASTM C78, (2000). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), West Conshohocken, PA 19428-2959, United States.
- ASTM C-192. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, Annual Book of ASTM Standards, West Conshohocken, PA, United States, 2000.
- ASTM C293/C293M. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading). West Conshohocken, PA: ASTM International, 2016.
- ASTM C143. Standard Test Method for Slump of Hydraulic-Cement Concrete. West Conshohocken, PA, United States, 2000.
- Concrete Society. Concrete industrial ground floors – a guide to design and construction. 3rd ed., Technical Report 34, 2003.
- Ding Y., Zhang F., Torgal F., et al. Shear behaviour of steel fibre reinforced self-consolidating concrete beams based on the modified compression field theory. Composite Structures, volume 94 (issue 8), July, 2012: Doi: 10.1016/j.compstruct.2012.02.025.
- Meza A., Pujadas P., Meza L.M, et al. Mechanical Optimization of Concrete with Recycled PET Fibres Based on a Statistical-Experimental Study. Materials, 14, 240, 2021. https://doi.org/10.3390/ma14020240