Publicaciones (56) Publicaciones en las que ha participado algún/a investigador/a

2024

  1. An automated network-based tool to search for metabolic vulnerabilities in cancer

    Nature Communications , Vol. 15, Núm. 1

  2. Application of Graph Models to the Identification of Transcriptomic Oncometabolic Pathways in Human Hepatocellular Carcinoma

    Biomolecules, Vol. 14, Núm. 6

  3. BN-BacArena: Bayesian network extension of BacArena for the dynamic simulation of microbial communities

    Bioinformatics, Vol. 40, Núm. 5

  4. EMVC-2: an efficient single-nucleotide variant caller based on expectation maximization

    Bioinformatics, Vol. 40, Núm. 3

  5. Extending PROXIMAL to predict degradation pathways of phenolic compounds in the human gut microbiota

    npj Systems Biology and Applications, Vol. 10, Núm. 1

  6. GeNNius: an ultrafast drug-target interaction inference method based on graph neural networks

    Bioinformatics (Oxford, England), Vol. 40, Núm. 1

  7. Hybrid Time-Frequency Domain Architecture for Chipless RFID Readers

    2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), INC-USNC-URSI 2024 - Proceedings

  8. NetActivity enhances transcriptional signals by combining gene expression into robust gene set activity scores through interpretable autoencoders

    Nucleic Acids Research, Vol. 52, Núm. 9, pp. e44

  9. Review and meta-analysis of the genetic Minimal Cut Set approach for gene essentiality prediction in cancer metabolism

    Briefings in Bioinformatics, Vol. 25, Núm. 3

  10. Single-cell transcriptional profile of CD34+ hematopoietic progenitor cells from del(5q) myelodysplastic syndromes and impact of lenalidomide

    Nature Communications, Vol. 15, Núm. 1

  11. Suitability of machine learning for atrophy and fibrosis development in neovascular age-related macular degeneration

    Acta Ophthalmologica, Vol. 102, Núm. 5, pp. e831-e841

  12. Whole exome sequencing and machine learning germline analysis of individuals presenting with extreme phenotypes of high and low risk of developing tobacco-associated lung adenocarcinoma

    eBioMedicine, Vol. 102

  13. gMCSpy: efficient and accurate computation of genetic minimal cut sets in Python

    Bioinformatics, Vol. 40, Núm. 6