Juan Pablo
Fuenzalida Werner
Profesor Asistente
Argitalpenak (14) Juan Pablo Fuenzalida Werner argitalpenak
2024
-
Knocking the Stability of Solar Cells with Fluorescent Protein Donors upon Rationalizing Design, Integration, and Mechanism
Advanced Materials Technologies, Vol. 9, Núm. 15
-
Simple Encoded Circularly Polarized Protein Lighting
Advanced Optical Materials, Vol. 12, Núm. 18
2023
-
Core–Shell Structured Fluorescent Protein Nanoparticles: New Paradigm Toward Zero-Thermal-Quenching in High-Power Biohybrid Light-Emitting Diodes
Advanced Science, Vol. 10, Núm. 16
-
Genetically Encoded Oligomerization for Protein-Based Lighting Devices
Advanced Materials, Vol. 35, Núm. 48
-
Supercharged Fluorescent Protein-Apoferritin Cocrystals for Lighting Applications
ACS Nano, Vol. 17, Núm. 21, pp. 21206-21215
2022
-
Designing Artificial Fluorescent Proteins: Squaraine-LmrR Biophosphors for High Performance Deep-Red Biohybrid Light-Emitting Diodes
Advanced Functional Materials, Vol. 32, Núm. 17
2016
-
On the role of alginate structure in complexing with lysozyme and application for enzyme delivery
Food Hydrocolloids, Vol. 53, pp. 239-248
2015
-
Biophysical Analysis of the Molecular Interactions between Polysaccharides and Mucin
Biomacromolecules, Vol. 16, Núm. 3, pp. 924-935
-
Polysaccharide-protein nanoassemblies: Novel soft materials for biomedical and biotechnological applications
Current Protein and Peptide Science, Vol. 16, Núm. 2, pp. 89-99
2014
-
Affinity protein-based FRET tools for cellular tracking of chitosan nanoparticles and determination of the polymer degree of acetylation
Biomacromolecules, Vol. 15, Núm. 7, pp. 2532-2539
-
Immobilization of hydrophilic low molecular-weight molecules in nanoparticles of chitosan/poly(sodium 4-styrenesulfonate) assisted by aromatic-aromatic interactions
Journal of Physical Chemistry B, Vol. 118, Núm. 32, pp. 9782-9791
-
Structure of Chitosan determines its interactions with mucin
Biomacromolecules, Vol. 15, Núm. 10, pp. 3550-3558
2010
-
Comparative study of the self-aggregation of rhodamine 6G in the presence of poly(sodium 4-styrenesulfonate), Poly(N -phenylmaleimide- co -acrylic acid), poly(styrene- alt -maleic acid), and poly(sodium acrylate)
Journal of Physical Chemistry B, Vol. 114, Núm. 37, pp. 11983-11992
-
Different models on binding of aromatic counterions to polyelectrolytes
Molecular Crystals and Liquid Crystals, Vol. 522, pp. 136/[436]-147/[447]