Self-contained microfluidic platform for general purpose lab-on-chip using pcb-mems technology

  1. Flores Salado, Guadalupe
Dirigida por:
  1. Francisco Perdigones Sánchez Director/a
  2. José Manuel Quero Reboul Director/a

Universidad de defensa: Universidad de Sevilla

Fecha de defensa: 20 de diciembre de 2017

Tribunal:
  1. Juan de la Cruz García Ortega Presidente/a
  2. Carmen Aracil Fernández Secretario/a
  3. Aggeliki Tserepi Vocal
  4. Enrique Castaño Carmona Vocal
  5. Despina Moschou Vocal

Tipo: Tesis

Teseo: 519234 DIALNET lock_openIdus editor

Resumen

El presente trabajo está centrado en la investigación de una nueva plataforma microfluídica autónoma para propósito general fabricada en PCBMEMS. En la vista de la proliferación en los últimos años de los sistemas microfluídicos Lab on Chip (LoC) y la multitud de aplicaciones en las que tienen cabida, surge la necesidad de creación de un sistema portable, autónomo y con una fabricación orientada hacia la producción masiva. En este contexto, se presenta el trabajo de esta tesis dentro de los proyectos de investigación de financiación nacional ISILAB (TEC2011-29045-C04-02) y BIOLOP (TEC2014-54449-C3-2- R). La tesis se encuentra organizada para cubrir los aspectos previamente propuestos. Primeramente, se presenta una introducción donde se explican los motivos para el desarrollo de este trabajo y cuáles son los objetivos específicos que se quieren cumplir. Seguidamente, se hace un breve estudio del arte. En este estudio se presenta la tecnología MEMS, los principios básicos de la microfluídica, que son los fundamentos de los sistemas LOCs y por último, se detalla un estudio de los principales elementos activos en la literatura que componen una plataforma microfluídica. Después de la introducción y revisión literaria del marco de esta tesis, se explican los resultados obtenidos. Esta tesis está desarrollada en dos fases principales: el desarrollo de todos los componentes que hacen un lab on chip autónomo de propósito general y el desarrollo de una tecnología basada en estándares para una producción masiva. En la primera fase se detallan los principales componentes que forman parte de una plataforma autónoma multifunción: microválvula, sistema de impulsión, circuito microfluídico y plataforma de sensado. Todos estos componentes son diseñados como un prototipo y están fabricados en SU-8 y PCBMEMS. El PCB permanece como sustrato y los canales y cámaras microfluídicas están fabricados en SU-8. La microválvula diseñada presenta una activación termoeléctrica, es de un solo uso y tiene una rápida activación y un consumo bajo de energía. Además, el diseño está pensado para ser altamente integrable en una plataforma microfluídica. El siguiente componente descrito es una sistema de impulsión basado en cámaras presurizadas, este sistema está integrado con la microválvula y su principal característica es la activación en el momento de uso, asegurando la ausencia de pérdidas. Para probar la validez de los componentes anteriores, se desarrolla un circuito microfluídico de propósito general. El circuito está diseñado para mezclar dos muestras y transportarlas a una cámara de detección. Finalmente, se desarrolla una plataforma para la detección de glucosa, integrable en el circuito microfluídico. Una vez desarrollado el prototipo, el siguiente objetivo de la tesis es el paso de la tecnología de prototipado hacía una de producción masiva. Para ello los materiales utilizados son el PMMA y el PCB. La tecnología PCBMEMS es conocida por su versatilidad para la integración de la electrónica, por lo que lo hace idóneo para la conexión con el exterior. El PMMA es un material también muy extendido en las aplicaciones microfluídicas, debido a su transparencia, bio compatibilidad y su fácil modelado. La unión de los dos componentes representa un desafío en el desarrollo de la tesis, debido a sus diferentes propiedades químicas. El proceso de fabricación se desarrolla integrando la microválvula y el sistema de impulsión, como partes de una plataforma microfluídica. Para terminar, se ha diseñado un pequeño circuito microfluídico para probar la viabilidad del sistema propuesto hacia una tecnología de gran escala. Finalmente, se exponen las conclusiones de la investigación, las posibles líneas futuras de este trabajo y los apéndices que complementan el trabajo de la tesis.