Climate change will redefine taxonomic, functional, and phylogenetic diversity of Odonata in space and time

  1. Cancellario, Tommaso
  2. Miranda, Rafael
  3. Baquero, Enrique
  4. Fontaneto, Diego
  5. Martínez, Alejandro
  6. Mammola, Stefano
Revista:
npj Biodiversity

ISSN: 2731-4243

Año de publicación: 2022

Volumen: 1

Número: 1

Tipo: Artículo

DOI: 10.1038/S44185-022-00001-3 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: npj Biodiversity

Objetivos de desarrollo sostenible

Resumen

Climate change is rearranging the mosaic of biodiversity worldwide. These broad-scale species re-distributions affect the structure and composition of communities with a ripple effect on multiple biodiversity facets. Using European Odonata, we asked: i) how climate change will redefine taxonomic, phylogenetic, and functional diversity at European scales; ii) which traits will mediate species' response to global change; iii) whether this response will be phylogenetically conserved. Using stacked species distribution models, we forecast widespread latitudinal and altitudinal rearrangements in Odonata community composition determining broad turnovers in traits and evolutionary lineages. According to our phylogenetic regression models, only body size and flight period can be partly correlated with observed range shifts. In considering all primary facets of biodiversity, our results support the design of inclusive conservation strategies able to account for the diversity of species, the ecosystem services they provide, and the phylogenetic heritage they carry in a target ecosystem.

Referencias bibliográficas

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
  • Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
  • Diamond, S. E. Contemporary climate‐driven range shifts: putting evolution back on the table. Functional Ecol. 32, 1652–1665 (2018).
  • Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).
  • Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
  • Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
  • Nelson, E. J. et al. Climate change’s impact on key ecosystem services and the human well‐being they support in the US. Front. Ecol. Environ. 11, 483–893 (2013).
  • Prather, C. M. et al. Invertebrates, ecosystem services and climate change. Biol. Rev. 88, 327–348 (2013).
  • Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
  • Ripple, W. J. et al. World scientists’ warning of a climate emergency 2021. BioScience 71, 894–898 (2021).
  • Gallagher, R. V., Hughes, L. & Leishman, M. R. Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography 36, 531–540 (2013).
  • Saladin, B. et al. Rapid climate change results in long-lasting spatial homogenization of phylogenetic diversity. Nat. Commun. 11, 1–8 (2020).
  • Stewart, P. S. et al. Global impacts of climate change on avian functional diversity. Ecol. Lett. 25, 673–685 (2022).
  • Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).
  • Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).
  • Pavoine, S. & Bonsall, M. B. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. 86, 792–812 (2011).
  • Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
  • Wang, S. & Loreau, M. Ecosystem stability in space: α, β and γ variability. Ecol. Lett. 17, 891–901 (2014).
  • Cardoso, P. et al. Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. J. Biogeogr. 41, 749–761 (2014).
  • Hassall, C. Odonata as candidate macroecological barometers for global climate change. Freshwater Sci. 34, 1040–1049 (2015).
  • Grewe, Y., Hof, C., Dehling, D. M., Brandl, R. & Brändle, M. Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Global Ecol. Biogeogr. 22, 403–409 (2013).
  • Moore, M. P. et al. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proc. Natl Acad. Sci. 118, https://doi.org/10.1073/pnas.2101458118 (2021).
  • Castillo-Pérez, E. U., Suárez-Tovar, C. M., González-Tokman, D., Schondube, J. E. & Córdoba-Aguilar, A. Insect thermal limits in warm and perturbed habitats: Dragonflies and damselflies as study cases. J. Thermal Biol. 103, 103164 (2022).
  • May, M. L. Odonata: Who they are and what they have done for us lately: Classification and ecosystem services of dragonflies. Insects 10, 62 (2019).
  • Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Global Change biology 11, 502–506 (2005).
  • Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biol. 12, 450–455 (2006).
  • Heino, J., Virkkala, R. & Toivonen, H. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol. Rev. 84, 39–54 (2009).
  • Mustonen, K. R. et al. Thermal and hydrologic responses to climate change predict marked alterations in boreal stream invertebrate assemblages. Global Change Biol. 24, 2434–2446 (2018).
  • Cadotte, M. W. & Tucker, C. M. Difficult decisions: strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).
  • Wong, J. S. et al. Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs 37, 737–750 (2018).
  • Arnan, X., Cerdá, X. & Retana, J. Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography 40, 448–457 (2017).
  • Strecker, A. L., Olden, J. D., Whittier, J. B. & Paukert, C. P. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecol. Appl. 21, 3002–3013 (2011).
  • Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10, 1–3 (2019).
  • Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).
  • Ovaskainen, O., Rybicki, J. & Abrego, N. What can observational data reveal about metacommunity processes? Ecography 42, 1877–1886 (2019).
  • Thomas, C. D. The development of Anthropocene biotas. Philos. Trans. R. Soc. B 375, 20190113 (2020).
  • Krosby, M. et al. Climate-induced range overlap among closely related species. Nat. Clim. Change 5, 883–886 (2015).
  • Sánchez-Guillén, R. A., Wellenreuther, M., Cordero-Rivera, A. & Hansson, B. Introgression and rapid species turnover in sympatric damselflies. BMC Evol. Biol. 11, 1–17 (2011).
  • Bybee, S. et al. Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Front. Zool. 13, 1–20 (2016).
  • Tobias, N. & Monika, W. Does taxonomic homogenization imply functional homogenization in temperate forest herb layer communities? Plant Ecol. 213, 431–443 (2012).
  • Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946 (2013).
  • Ball-Damerow, J. E., M’Gonigle, L. K. & Resh, V. H. Changes in occurrence, richness, and biological traits of dragonflies and damselflies (Odonata) in California and Nevada over the past century. Biodiversity Conserv. 23, 2107–2126 (2014).
  • McGoff, E., Solimini, A. G., Pusch, M. T., Jurca, T. & Sandin, L. Does lake habitat alteration and land-use pressure homogenize European littoral macroinvertebrate communities? J. Appl. Ecol. 50, 1010–1018 (2013).
  • Vilenica, M., Kerovec, M., Pozojević, I. & Mihaljević, Z. Odonata assemblages in anthropogenically impacted lotic habitats. J. Limnol. 80, 1968 (2021).
  • Mammola, S. et al. Challenges and opportunities of species distribution modelling of terrestrial arthropod predators. Diversity Distrib. 27, 2596–2614 (2021).
  • Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecol. Biogeogr. 27, 245–256 (2018).
  • Kalkman, V. J. et al. Diversity and conservation of European dragonflies and damselflies (Odonata). Hydrobiologia 811, 269–282 (2018). .
  • Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).
  • Miller, J. A. & Holloway, P. Incorporating movement in species distribution models. Progr. Phys. Geogr. 39, 837–849 (2015).
  • Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. 115, 11982–11987 (2018).
  • Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
  • Pinkert, S. et al. Evolutionary processes, dispersal limitation and climatic history shape current diversity patterns of European dragonflies. Ecography 41, 795–804 (2018).
  • Comte, L., Murienne, J. & Grenouillet, G. Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat. Commun. 5, 1–9 (2014).
  • Buckley, L. B. & Kingsolver, J. G. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Ann. Rev. Ecol. Evol. Syst. 43, 205–226 (2012).
  • Tikhonov, G. et al. Joint species distribution modelling with the R‐package Hmsc. Methods Ecol. Evol. 11, 442–447 (2020).
  • Corbet, P. S. The life-history of the emperor dragonfly Anax imperator Leach (Odonata: Aeshnidae). J. Animal Ecol. 1–69. https://doi.org/10.2307/1781 (1957).
  • Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8(9), 993–1009 (2005).
  • Peterson, A. T. et al. Ecological niches and geographic distributions (MPB-49) (Princeton University Press, 2011).
  • Franklin, J. Mapping species distributions: spatial inference and prediction (Cambridge University Press, 2010).
  • Ryo, M. et al. Explainable artificial intelligence enhances the ecological interpretability of black‐box species distribution models. Ecography 44(2), 199–205 (2021).
  • Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
  • Adams, M. P. et al. Prioritizing localized management actions for seagrass conservation and restoration using a species distribution model. Aquat. Conserv. Marine Freshwater Ecosyst. 26, 639–659 (2016).
  • Ficetola, G. F., Thuiller, W. & Padoa‐Schioppa, E. From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Diversity Distrib. 15, 108–116 (2009).
  • Wang, Y., Xie, B., Wan, F., Xiao, Q. & Dai, L. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Sci. 15, 365 (2007).
  • Santini, L., Benítez‐López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. Assessing the reliability of species distribution projections in climate change research. Diversity Distrib. 27, 1035–1050 (2021).
  • Guyennon, A. et al. Colonization and extinction dynamics and their link to the distribution of European trees at the continental scale. J. Biogeogr. 49, 117–129 (2022).
  • Pritchard, G. & Leggott, M. A. Temperature, incubation rates and origins of dragonflies. Adv. Odonatol. 3, 121–126 (1987).
  • Clausnitzer, V. et al. Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biol. Conserv. 142, 1864–1869 (2009).
  • Córdoba-Aguilar, A. (Ed.). Dragonflies and damselflies: model organisms for ecological and evolutionary research (OUP Oxford, 2008).
  • Corbet, P. S. et al. Dragonflies: behaviour and ecology of Odonata (Harley books, 1999).
  • Troast, D., Suhling, F., Jinguji, H., Sahlén, G. & Ware, J. A global population genetic study of Pantala flavescens. PloS One 11, e0148949 (2016).
  • Harabiš, F. & Dolný, A. The effect of ecological determinants on the dispersal abilities of central European dragonflies (Odonata). Odonatologica 40, 17 (2011).
  • Boudot, J. P. & Kalkman, V. J. (eds) Atlas of the European dragonflies and damselflies (KNNV publishing, 2015).
  • Dijkstra, K. D. & Schröter, A. Field guide to the dragonflies of Britain and Europe (Bloomsbury Publishing, 2020).
  • Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PloS One 12, e0189577 (2017).
  • Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inf. 19, 10–15 (2014).
  • Zizka, A. et al. No one-size-fits-all solution to clean GBIF. PeerJ 8, e9916 (2020).
  • Burgman, M. A. & Fox, J. C. Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning, Animal Conservation Forum (6, No. 1, pp. 19–28 (Cambridge University Press, 2003). https://doi.org/10.1017/S1367943003003044
  • Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).
  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
  • Hijmans, R. J. Raster: geographic data analysis and modeling. https://CRAN.R-project.org/package=raster (2020).
  • Hijmans, R. J., Phillips S., Leathwick J. & Elith J. Dismo: species distribution modeling. https://CRAN.R-project.org/package=dismo (2020).
  • Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).
  • Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
  • Mukaka, M. M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 24, 69–71 (2012).
  • Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
  • Hausfather, Z. & Peters, G. P. Emissions–the ‘business as usual’story is misleading https://doi.org/10.1038/d41586-020-00177-3 (2020)
  • Mammola, S., Milano, F., Vignal, M., Andrieu, J. & Isaia, M. Associations between habitat quality, body size and reproductive fitness in the alpine endemic spider Vesubia jugorum. Global Ecol. Biogeogr. 28, 1325–1335 (2019).
  • Mammola, S., Goodacre, S. L. & Isaia, M. Climate change may drive cave spiders to extinction. Ecography 41(1), 233–243 (2018).
  • Hastie, T. J. & Tibshirani, R. J. Generalized additive models (Routledge, 2017).
  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3-4), 231–259 (2006).
  • Phillips, S. J., Dudík, M. & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning (p. 83).https://doi.org/10.1145/1015330.1015412 (2004).
  • Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Animal Ecol. 77, 802–813 (2008).
  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
  • Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
  • Grenouillet, G., Buisson, L., Casajus, N. & Lek, S. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34, 9–17 (2011).
  • Phillips, S. J. et al. Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data. Ecol. Appl. 19, 181–197 (2009).
  • Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
  • Zhang, Z. et al. Lineage‐level distribution models lead to more realistic climate change predictions for a threatened crayfish. Diversity Distrib. 27, 684–695 (2021).
  • Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).
  • Martín‐Vélez, V. & Abellán, P. Effects of climate change on the distribution of threatened invertebrates in a Mediterranean hotspot. Insect Conserv. Divers. https://doi.org/10.1111/icad.12563 (2022).
  • Qiao, H., Soberon, J. & Peterson, A. T. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 6, 1126–1136 (2015).
  • Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography 43, 1261–1277 (2020).
  • Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).
  • Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61(1), 1–10 (1992).
  • Cadotte, M. W. et al. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol. Lett. 13, 96–105 (2010).
  • Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).
  • Corbet, P. S. ‘Biology of Odonata’. Ann. Rev. Entomol. 25, 189–217 (1980).
  • Mitchell. Dragonfly locomotion: Ecology, form and function. PhD thesis, (University of Leeds, 2018). https://etheses.whiterose.ac.uk/21211/.
  • The GIMP Development Team. GIMP (version 2.10.12). https://www.gimp.org (2019).
  • Weller, H. Colordistance: distance metrics for image color similarity. https://CRAN.R-project.org/package=colordistance (2020).
  • R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). https://www.R-project.org/.
  • de Bello, F., Botta‐Dukát, Z., Lepš, J. & Fibich, P. Towards a more balanced combination of multiple traits when computing functional differences between species. Methods Ecol. Evol. 12, 443–448 (2021).
  • Hassall, C. & Thompson, D. J. The effects of environmental warming on Odonata: a review. Int. J. Odonatol. 11, 131–153 (2008).
  • Acquah‐Lamptey, D., Brändle, M., Brandl, R. & Pinkert, S. Temperature‐driven color lightness and body size variation scale to local assemblages of European Odonata but are modified by propensity for dispersal. Ecol. Evol. 10, 8936–8948 (2020).
  • Outomuro, D. & Johansson, F. Wing morphology and migration status, but not body size, habitat or Rapoport’s rule predict range size in North‐American dragonflies (Odonata: Libellulidae). Ecography 42, 309–320 (2019).
  • Rundle, S. D., Bilton, D. T., Abbott, J. C. & Foggo, A. Range size in North American Enallagma damselflies correlates with wing size. Freshwater Biol. 52, 471–477 (2007).
  • Finlayson, C. M. et al. The second warning to humanity–providing a context for wetland management and policy. Wetlands 39, 1–5 (2019).
  • Okude, G. & Futahashi, R. Pigmentation and color pattern diversity in Odonata. Curr. Opin. Genet. Dev. 69, 14–20 (2021).
  • Mani, M. S. Ecology and biogeography of high altitude insects, vol. 4. (Springer Science & Business Media, 2013).
  • Suárez‐Tovar, C. M., Guillermo‐Ferreira, R., Cooper, I. A., Cezário, R. R. & Córdoba‐Aguilar, A. Dragon colors: the nature and function of Odonata (dragonfly and damselfly) coloration. J. Zool. https://doi.org/10.1111/jzo.12963 (2022).
  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
  • Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).
  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).
  • Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).
  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
  • Cardoso, P., Stefano, M., Francois, R. & Jose, C. C. BAT: biodiversity assessment tools. https://CRAN.R-project.org/package=BAT (2021).
  • Robert J. H. geosphere: spherical trigonometry. R package version 1.5-14. https://CRAN.R-project.org/package=geosphere (2021).
  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 217–223 https://doi.org/10.1111/j.2041-210X.2011.00169.x (2012).
  • Joy, J. B., Liang, R. H., McCloskey, R. M., Nguyen, T. & Poon, A. F. Ancestral reconstruction. PLoS Comput. Biol. 12, e1004763 (2016).
  • Orme, D. et al. caper: comparative analyses of phylogenetics and evolution in R. R package version 1.0.1 (2018).
  • Silva, L. F. et al. Functional responses of Odonata larvae to human disturbances in neotropical savanna headwater streams. Ecol. Indic. 133, 108367 (2021).