ML4BM
Machine Learning for Biomedicine
Publicaciones (13) Publicaciones en las que ha participado algún/a investigador/a
2024
-
A robust clustering strategy for stratification unveils unique patient subgroups in acutely decompensated cirrhosis
Journal of Translational Medicine, Vol. 22, Núm. 1
-
Application of Graph Models to the Identification of Transcriptomic Oncometabolic Pathways in Human Hepatocellular Carcinoma
Biomolecules, Vol. 14, Núm. 6
-
Common genetic variants associated with urinary phthalate levels in children: A genome-wide study
Environment International, Vol. 190
-
Efficient and safe therapeutic use of paired Cas9-nickases for primary hyperoxaluria type 1
EMBO molecular medicine, Vol. 16, Núm. 1, pp. 112-131
-
GeNNius: an ultrafast drug-target interaction inference method based on graph neural networks
Bioinformatics (Oxford, England), Vol. 40, Núm. 1
-
Genie: the first open-source ISO/IEC encoder for genomic data
Communications Biology, Vol. 7, Núm. 1
-
NetActivity enhances transcriptional signals by combining gene expression into robust gene set activity scores through interpretable autoencoders
Nucleic Acids Research, Vol. 52, Núm. 9, pp. e44
-
Nivolumab with or without ipilimumab in patients with recurrent or metastatic cervical cancer (CheckMate 358): a phase 1–2, open-label, multicohort trial
The Lancet Oncology, Vol. 25, Núm. 5, pp. 588-602
-
Single-cell transcriptional profile of CD34+ hematopoietic progenitor cells from del(5q) myelodysplastic syndromes and impact of lenalidomide
Nature Communications, Vol. 15, Núm. 1
-
Suitability of machine learning for atrophy and fibrosis development in neovascular age-related macular degeneration
Acta Ophthalmologica, Vol. 102, Núm. 5, pp. e831-e841
-
The oncolytic adenovirus Delta-24-RGD in combination with ONC201 induces a potent antitumor response in pediatric high-grade and diffuse midline glioma models
Neuro-Oncology, Vol. 26, Núm. 8, pp. 1509-1525
-
Use of Beacon v2 for Improving Genomics Based Research in a Clinical Setting
Studies in health technology and informatics, Vol. 316, pp. 1243-1247
-
Whole exome sequencing and machine learning germline analysis of individuals presenting with extreme phenotypes of high and low risk of developing tobacco-associated lung adenocarcinoma
eBioMedicine, Vol. 102